


APPROVAL SHEET

Title of Dissertation:  Hybrid Approaches to Color Image Quantization

Name of Candidate:  Paula Julie Reitan
 Doctor of Philosophy, 1999

Dissertation and Abstract Approved:                                                                                     
Dr. Charles K. Nicholas
Associate Professor
Department of Computer Science and Electrical Engineering

Date Approved:   January 25, 1999                



CURRICULUM VITAE

Name:  Paula Julie Reitan.

Permanent Address:  5902 Grenfell Loop, Bowie, Maryland 20720.

Degree and date to be conferred:  Doctor of Philosophy, 1999.

Date of Birth:   October 6, 1963.

Place of Birth:  Omaha, Nebraska.

Secondary education:  Decorah Senior High School, Decorah, Iowa, May 1982.

Collegiate institutions attended:

8/92-1/99 University of Maryland Baltimore County
Baltimore, Maryland
Doctor of Philosophy, 1998.

1/86-12/86 The Johns Hopkins University Whiting School of Engineering
Baltimore, Maryland
Masters of Science, 1987.

7/82-5/86 The United States Naval Academy
Annapolis, Maryland
Bachelors of Science, 1986.

Major:   Computer Science.

Professional publications:

REITAN, PAULA J.  "3D Visualization of Color Image Histograms."  Computer
Network and ISDN Systems, 30(20-21):2025-35, (November 1998).

REITAN, PAULA J. AND NICHOLAS, CHARLES K. "Heterogeneous 3D Data Structure for
Color Image Quantization."  Poster presented at the 20th Annual Graduate
Student Research Day.  University of Maryland Baltimore County, April 29,
1998.  (Placed first in Electrical Engineering Poster Session.)



REITAN, PAULA J.  "3D Visualization of Truecolor Image Histograms."  Sixth
International Conference on Computational Graphics and Visualization
Techniques, pp. 320-9, Vilamoura, Algarve, Portugal, (December 15-18, 1997).

Professional positions:

8/98-present Assistant Professor at the United States Naval Academy
Computer Science Department
United States Naval Academy
Annapolis, Maryland 21402

8/92-8/98 Instructor at the United States Naval Academy
Computer Science Department
United States Naval Academy
Annapolis, Maryland 21402

6/92-7/92 Instructor at Luther College Upward Bound Program
Luther College Upward Bound
Decorah, Iowa 52101.

8/91-3/92 Technical Support at Meridian Software Systems
Meridian Software Systems
10 Pasteur Street
Irvine, California 92715

5/86-7/91 Officer in the United States Navy
Achieved rank of Lieutenant,
Surface Warfare Qualified

Teaching Experience:

Courses taught at the United States Naval Academy:

SI204L Introduction to Computer Science (lab only) Fall 92, Fall 93

SI220 Data Structures Spring 93, Spring 94, Fall 94,
Spring 95, Fall 95, Fall 96,
Spring 97

SI283 Programming for Engineers Fall 98

SI433 Advanced Computer Algorithms Spring 96

SI460L Computer Graphics (lab only) Spring 98

SI462L Advanced Computer Graphics (lab only) Fall 97

SI462 Advanced Computer Graphics Fall 98

Courses taught at the University of Maryland Baltimore County:

CMSC 109 OOP in C++ Summer 95

CMSC 341 Data Structures Summer 94



ABSTRACT

Title of Dissertation:  Hybrid Approaches to Color Image Quantization

Paula Julie Reitan, Doctor of Philosophy, 1999

Dissertation directed by: Dr. Charles K. Nicholas
Associate Professor
Department of Computer Science and Electrical Engineering

Color image quantization is the irreversible transformation of a truecolor image into a

color-mapped image consisting of K carefully selected representative colors.  There are

many possible mappings of a truecolor image to a quantized image using K colors.  The

primary goal of color quantization is to minimize the visual distortion between the

original image and the quantized image.

This dissertation proposes a heterogeneous-cut algorithm that combines the speed of

oct-cut methods with the accuracy of 24-bit precision, variance-minimization and

principal component oblique-cut methods to achieve high quality quantized images

quickly.  This dissertation also presents a fast and effective (improves image quality)

method for generalizing activity weighting to any histogram-based color quantization

algorithm.  The value of the heterogeneous-cut algorithm and activity weighting is

validated by a comprehensive empirical analysis of thirty-nine other hierarchical color

quantization techniques using a test set consisting of twenty-five diverse images.  Of the

high quality quantization techniques studied in the analysis, the proposed heterogeneous-

cut algorithm is the fastest.

This dissertation shows that the maximum intercluster distance is not an appropriate

error measure for color image quantization (MinMax).  Furthermore, this dissertation

proposes a new non-hierarchical color quantization technique called weighted MinMax

that is a hybrid between the MinMax and Linde-Buzo-Gray (LBG) algorithms.  The new



method incorporates frequency (or activity weighting) information in order to obtain high

quality quantized images with significantly less visual distortion than the MinMax

algorithm.  However, the running time of both the MinMax and the weighted MinMax

algorithm is not competitive with any of the hierarchically divisive methods.
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Chapter  1 

Introduction

Color image quantization is the irreversible transformation of a truecolor image into a

color-mapped image consisting of K carefully selected representative colors.  When

Heckbert proposed the color image quantization problem in his seminal SIGGRAPH

paper [Hec82], most graphics workstations had CRT monitors with an 8-bit frame buffer,

capable of displaying only 256 colors at a time.  Thus, to render a truecolor image on an

8-bit frame buffer, the number of colors used to represent the image must be reduced to

256 or less.  There are many possible mappings of a truecolor image to a quantized image

using K colors.  The primary goal of color quantization is to minimize the visual

distortion between the original image and quantized image.

For example, there are noticeable differences between the truecolor image Jhonni and

two color-mapped representations (K=128 and 64) displayed in Color Plate 1.1.  One of

the most noticeable artifacts is contouring in smooth regions such as Jhonni’s nose,

cheeks, forehead, arm, and even the background in the lower-left corner. Contouring such

as this is one of the most common problems associated with color image quantization and

has been the focus of much research [BaA91a, BaAB94, ChTM94, LiC95, JoX96

KiLLH96a, KiLLH96b, Shu97].  In addition, the specular highlight on her nose is

objectionably noticeable.  A less noticeable artifact present in Color Plate 1.1 is a reddish

shift in the color of Jhonni’s hair.  From a subjective point of view, the quantized images

in Color Plate 1.1 are not acceptable since they contain quantization artifacts that are

visually objectionable.



(a)  N=67,085 (b)  K=128 (c)  K=64

Color Plate 1.1:  Quantization of Truecolor Image Jhonni.  (a) Jhonni has 240,000 pixels (600x400) and 67,085 unique colors in
RGB space.  Jhonni has been quantized to (b) K=128  and (c) K=64 colors in RGB space.  Images are printed at 65 percent of their
original spatial resolution.  Jhonni is courtesy of Dr. Andrew T. Phillips.   

2



3

1.1 Image Compression

With the advent of the multimedia era, 24-bit frame buffers have become commonplace.

However, researchers continue to be interested in the color image quantization problem

because 8-bit frame buffers remain in existence and because of this problem’s

applicability to image compression.  As the multimedia and Internet eras progress at full

steam ahead, both the demand and supply of images are increasing at an alarming rate;

thus the need for efficient ways of representing images has become increasingly more

important.

Images are typically compressed to reduce the amount of data required to represent an

image.  All image compression techniques embody both a compression algorithm and a

reconstruction algorithm.  The image compression process is illustrated in Figure 1.1.  If

an image compression technique guarantees that, for any image IC , the reconstructed

image IR, will be identical to the original image I, then it is called lossless; otherwise it is

called lossy.   As such, color image quantization is a form of lossy image compression.

Color quantization is a fundamental component of several lossy image compression

formats, most notable is the Graphics Interchange Format (GIF) which is a common

image format found on the Internet.  GIF compresses colormapped images using a variant

of the Lempel Ziv Welch (LZW)1 dictionary-based coding technique [MuV94 and

Say96].  The GIF image compression technique is illustrated in Figure 1.2.  GIF requires

that a truecolor image first be color quantized to 256 or fewer colors.  The GIF format

first stores the colormap, then the image data.  Each pixel is encoded by the index of its

representative color in the colormap.  LZW builds a dictionary of patterns; the patterns

may be repeated using a reference to its dictionary entry.  LZW is a lossless image

compression technique and works particularly well for computer generated images which

often contain large blocks of the same color.  Since color quantization is the only lossy

part of compressing a truecolor image using GIF, the color quantizer, Q, directly impacts

the fidelity of the compressed image.  Therefore improvements in color quantization

techniques remain of great value.

                                               
1 LZW is patented by Unisys, United States Patent No. 4,558,302.
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I

 II

C

Compression Reconstruction

= lossless                   ≈ lossy

R

Figure 1.1:  Image Compression.  The compression algorithm encodes an image, I, into
a smaller image, IC, such that the reconstruction algorithm can decode IC to IR, where IR is
either identical to I or is at least a reasonably close approximation to I.    

    I

I II

GIF

LZW compression

= lossless  

LZW reconstruction

Q Q
Q

Figure 1.2:  GIF Image Compression.  First a truecolor image, I, is color quantized
using the color quantizer Q to a color-mapped image IQ.  The color-mapped image is then
compressed using LZW to a GIF image IGIF .  The LZW reconstruction algorithm
faithfully restores the color-mapped image IQ from IGIF .  Note that due to the color
quantization IQ ≠ I.
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1.2 Color Quantization

One of the primary tasks of color quantization is to select a set, R, of K colors:

R = { r0, r1, …, rK-1 } ⊂ RGB (1.1)

to represent the unique colors in the truecolor image.  The algorithm used to select the K

representative colors will be generically referred to as Select .  Once the K

representative colors have been selected, each of the pixels in the truecolor image is

mapped to a representative color usually chosen to minimize a given distortion metric

(Section 2.4).  The algorithm used to map image pixels to a representative color will be

called Map.  Collectively, Select  and Map will be referred to as the color quantizer Q.

Numerous and varied techniques have been proposed for the selection of

representatives.  Uniform color quantization techniques use the same set of representative

colors for all truecolor images.  On the other hand, adaptive color quantization techniques

select a set of representative colors for each truecolor image.  Since uniform quantization

techniques generally produce poor quality color-mapped images, this dissertation only

describes and compares adaptive techniques.  This dissertation organizes techniques for

Select  into two broad categories:

(i) hierarchical (Chapter  3) and

(ii)  non-hierarchical (Chapter  4).

This form of classification is commonly used in clustering analysis that strives to

discover structure in complex data.  Since many color quantization techniques were first

proposed as general-purpose clustering algorithms this classification scheme is natural.

Hierarchical methods use divisive (or agglomerative) techniques to build a tree from the

top down (or bottom up) containing the set of unique colors in the truecolor image.  Non-

hierarchical techniques include methods that use iteration, self-organizing neural

networks, and genetic programming to refine previously selected representatives.
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Let C be the set of unique colors in a truecolor image.  Map induces a partitioning

S ={ }110 ,,, −Ksss � (1.2)

of C into K clusters called a K-split.  Each cluster si contains the colors in the truecolor

image which are mapped to the representative color ri.

Various methods have been proposed for mapping image colors to representative

colors.  The most accurate, but slowest method is to map each color to its nearest

neighbor.  Heckbert proposed using a specialized data structure to preprocess the image

colors into a locally sorted list, thus limiting the number of possible nearest neighbors

[Hec82].  Spatial subdivisions such as k-d trees and octrees can also be used to speed up

the search for a representative color.  Centroid mapping [RoG95] is applicable when the

technique used to select the representatives results in a spatial subdivision having K

leaves.  Centroid mapping is very fast because the centroid of each leaf represents all the

colors in the leaf's domain; however, it is not as accurate as using the nearest neighbor.

1.3 Contributions

This dissertation proposes a heterogeneous-cut algorithm that combines five of these

divisive algorithms in a unique way that capitalizes on the strengths of each technique,

but does not suffer from their weaknesses.  In summary, this dissertation makes the

following contributions:

1) Section 2.3.1 proposes a fast and effective (improves image quality) method for

generalizing any histogram-based non-activity weighted color quantization

algorithm to a histogram-based, activity weighted color quantization algorithm.

2) Section 3.2 introduces a general taxonomy for classifying hierarchically divisive

color quantization methods.

3) Chapter  3 provides a comprehensive survey and comparative analysis of thirty-

nine hierarchical color quantization methods using a test set consisting of twenty-

five diverse images.  Some of the methods discussed in this chapter have not been

previously studied.
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4) Section 4.2 shows that the maximum intercluster distance is not an appropriate

error measure for color image quantization (MinMax).

5) Section 5.1 proposes an adaptive heterogeneous-cut algorithm that enables fast,

but high quality hierarchically divisive quantization in full 24-bit precision. Of the

high quality quantization techniques studied in the dissertation, the proposed

heterogeneous-cut algorithm is the fastest.

6) Section 5.2 proposes a new non-hierarchical color quantization technique called

weighted MinMax that is a hybrid between the MinMax and Linde-Buzo-Gray

(LBG) algorithms. The new method incorporates frequency (or activity

weighting) information in order to obtain high quality quantized images with

significantly less visual distortion than the MinMax algorithm.  However, the

running time of both the MinMax and the weighted MinMax algorithm is not

competitive with any of the hierarchically divisive methods.

1.4 Dissertation Overview

This section describes the overall organization of the dissertation.  The next chapter

describes techniques that are generally applicable to many color quantization methods.

The chapter concludes with a description of the strategy used to perform the empirical

analyses in Chapters 3-5.  Specifically, Chapter  3 surveys and analyzes hierarchical

quantization methods, while Chapter  4 surveys and analyzes some of the non-

hierarchical color quantization methods.  The proposed heterogeneous-cut algorithm

described in Section 5.1 is motivated by the empirical analysis presented in Section 3.3.

The heterogeneous-cut algorithm enables fast, but high quality hierarchically divisive

quantization in full 24-bit precision.  Chapter  5 also proposes the weighted MinMax

algorithm that is a hybrid between MinMax and LBG.  Section 5.2 shows that the

weighted MinMax algorithm produces quantized images with excellent quality (far

superior to  MinMax).
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Chapter  2 

Color Quantization Techniques

2.1 Truecolor Images

Stokes, Fairchild and Berns [StFB92] experimentally showed that a minimum of 7.4-bits

of precision are required in each of the red, green, and blue color directions to precisely

display full-color images.  In this dissertation the full-color images are stored in Targa's

Truecolor image format [MuV94] which represents each image pixel using 8-bits of

precision for each red, green, and blue channel:

RGB = { ( r, g, b) | r, g, b ∈ ¯256 }. (2.1)

Thus, RGB denotes the set of 2563 (16M) possible colors in a truecolor image.  A

truecolor image I is more formally defined as a total function:

I: ¯H  x ¯W 
 → C, (2.2)

where I(x, y)  is the RGB color of the pixel at row x, column y of image I and

C = { c1, c2, …, cN } ⊆ RGB. (2.3)

Thus, C is the set of N unique colors present in image I.

2.1.1 Truecolor Image Test Set

Twenty-five natural and computer generated color images were selected as an "in

practice average-case" test set of truecolor images.  Thumbnails of the images in the test

set are displayed in Color Plate 2.1.  Copyright issues make the compilation of a large,

diverse and comprehensive image test set difficult; nonetheless, the test set used in this
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dissertation contains a good variety of images typically encountered in practice.  Table

2.1 shows there is a wide range in the number of pixels and in the number of unique

colors in the images of the test set.

The test set images were selected because they exhibit many of the characteristics

commonly found in color digital imagery:

• Low frequency (smoothly varying) regions where false contours are more

noticeable,

• Isolated colors which force color shifting, and

• High frequency regions where sharpness may be deteriorated.

Section 2.1.3 provides specific rationale for including each of the images in the test set.

2.1.2 Truecolor Image Histograms

The first step of many color quantization techniques is to create a histogram of the colors

in the truecolor image. The histogram H of a truecolor image I is defined as a total

function:

H: RGB → £ (2.4)

where H(c) is the number of pixels in the image I with color c.  Note that H does not

contain any spatial information about the pixels in I.

Color Plate 2.2 displays a view of the histogram for each image in the test set.  These

histograms show that there is a good variety in the shape of the image test set histograms.

The histogram visualizations presented in this dissertation were created using a C++

program developed by the author called LindyHop.  Various other methods for

visualizing truecolor image histograms are described in [Rei97 and Rei98].
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1.  Shufelt 2.  RGBCube 3.  Shapes

4.  Crambin 5.  Solids

6.  Marble 7.  Cathedral

8.  Sunset 9.  Empire 10.  Jhonni

11.  Parrot 12.  Matches 13.  Mom 14.  Tiger 15.  Flowers

16.  Peppers

17.  Boys 18.  Windsails

19.  Cat 20.  Woman

21.  Lena 22.  Boy

23.  Eye

24.  Chapel

25.  Sailing

Color Plate 2.1:  Image Test Set.  Twenty-five truecolor images selected to analyze the
accuracy and time requirements of the color image quantization techniques discussed in
this dissertation     
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# Name W H P = W⋅H N

1 Shufelt 264 264 69,696 20,302
2 RGBCube 256 256 65,536 34,111
3 Shapes 576 576 331,776 9,554
4 Crambin 640 480 307,200 19,073
5 Solids 640 480 307,200 31,429
6 Marble 731 475 347,225 21,532
7 Cathedral 732 485 355,020 28,662
8 Sunset 512 768 393,216 19,306
9 Empire 423 640 270,720 57,388

10 Jhonni 400 600 240,000 67,085
11 Parrot 768 512 393,216 40,565
12 Matches 640 480 307,200 64,112
13 Mom 600 400 240,000 96,486
14 Tiger 739 493 364,327 73,939
15 Flowers 768 512 393,216 71,687
16 Peppers 512 512 262,144 111,344
17 Boys 971 641 622,411 23,676
18 Windsails 768 512 393,216 86,008
19 Cat 491 729 357,939 95,916
20 Woman 512 768 393,216 94,279
21 Lena 512 512 262,144 148,279
22 Boy 641 970 621,770 180,274
23 Eye 900 596 536,400 267,246
24 Chapel 652 1,024 677,648 266,764
25 Sailing 1,220 863 1,052,860 177,844

          Max 1,220 1,024 1,052,860 267,246
          Min 256 256 65,536 9,554
          Avg 635 582 382,212 84,274

Table 2.1: Spatial and Color Resolution of the Image Test Set.  P is the number of
pixels in the image; N is the number of unique RGB colors in the image.
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1.  N=20,302
     P=69,696

2.  N=34,111
     P=65,536

3.  N=9,554
     P=331,776

4.  N=19,073
     P=307,200

5.  N=31,429
     P=307,200

6.  N=21,532
     P=347,225

7.  N=28,662
     P=355,020

8.  N=19,306
     P=393,216

9.  N=57,388
     P=270,720

10. N=67,085
      P=240,000

11. N=40,565
      P=393,216

12. N=64,112
      P=307,200

13. N=96,486
      P=240,000

14. N=73,939
      P=364,327

15. N=71,687
      P=393,216

16. N=111,344
      P=262,144

17. N=23,676
      P=622,411

18. N=86,008
      P=393,216

19. N=95,916
      P=357,939

20. N=94,279
      P=393,216

21. N=148,279
      P=262,144

22. N=180,274
      P=621,770

23. N=267,246
      P=536,400

24. N=266,764
      P=677,648

25. N=177,844
      P=1,105,860

Color Plate 2.2:  Histograms of the Image Test Set.  Snap shot of the histogram of each
image in the test set.
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2.1.3 Image Test Set Discussion and Credits

A description of each of the twenty-five images in the test set is provided below.

1. Shufelt was created using Shufelt’s description of his first test image in [Shu97].

This image was designed to contain a large smooth area in which contouring can be

a problem as well as a textured area in which large quantization errors may exist

without being noticed by the observer.

2. RGBCube was designed to contain large, smoothly varying region in which

contouring is problematic.  It was modeled after an image used by Xiang  [Xia97]

to test the MinMax quantization technique (Section 4.2).

3. Shapes was created using the Persistence of Vision Raytracer version 3.0 (POV-

Ray) located on the web at (http://www.povray.org).  The scene description is

located in povray3/pov3demo/demo/shapes.pov. Shapes was included to contain

large, smoothly varying areas as well as regions with sharp edges.

4. Crambin was created using PovChem version 1.0 by Paul Thiessen

(http://cherubino.med.jhmi.edu/~paul/PovChem.html) and POV-Ray.  The

molecule rendered is called crambin, and its description (crambin.pdb) was

provided by Dr. Andrew T. Phillips.

5. Solids was also created using POV-Ray.  The scene description is a slightly

modified version of povray3/pov3demo/radios/rad1.pov.  Solids was included to

contain large, smoothly varying areas as well as sharp edges.

6. Marble is image israel\1558_050.jpg from the World Photo CD-ROM (Aztech New

Media Corporation, http://www.aztech.com).  It was included because it contains

natural textures.

7. Cathedral is image russia\1548_068.jpg also from the World Photo CD-ROM.  It

was included because skies are particularly susceptible to contouring.  Also, the

gold in the dome is a prominent feature of the image, but is isolated from the other

colors in the image.
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8. Sunset is image Photo_cd\Img0015.pcd from the Textures CD-ROM (Arc Media

Incorporated, Buffalo, New York, 1994).  It was selected because the smoothly

varying region of yellows, oranges and reds around the setting sun are particularly

susceptible to contouring.

9. Empire is image misc\8000_001.jpg also from the World Photo CD-ROM.  It was

selected because of the high contrast in colors from the darkness of the night and

the lights of the city.

10. Jhonni is courtesy of Dr. Andrew T. Phillips.  Close-ups of people are particularly

difficult to quantize, because we have very strong expectations of what a human

face should look like.  Even the smallest amount of error may be quite noticeable

and objectionable when located in a close-ups people.

11. Parrot is image Photo_cd\Img0077.pcd from also from the Textures CD-ROM.  It

was selected because it resembles a test image used by Velho, Gomes and Sobreiro

[VeGS97] to test the pairwise nearest neighbor quantization technique (Section

3.1).

12. Matches was also created using POV-Ray.  The scene description is located in

povray3/pov3demo/showoff/matches.pov.  Matches was selected because it is a

synthetic image which contains many colors.  The area around the lit match

contains many of the same characteristics found in Sunset and Boys.

13. Mom is also courtesy of Dr. Andrew T. Phillips.  It was included because it contains

quite a large number of colors that are spread nicely throughout the RGB space.

14. Tiger is image india\1071_031.jpg from the World Photo CD-ROM.  It was

included because it contains natural textures.

15. Flowers is image Photo_cd\Img0081.pcd also from the Textures CD-ROM.  It was

selected because the smoothly varying regions of yellow on the petals are

particularly difficult to quantize.

16. Peppers is from the University of Waterloo’s ColorSet Repertoire

(http://links.uwaterloo.ca/colorset.base.html).  Peppers was included because it is a

classic image used in image compression and image quantization research.  The
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specular highlights on the peppers come from a small area isolated from the rest of

the colors in the image; thus they tend to become objectionably noticeable.

17. Boys is image Learning\Boys.lrg from the World Photo CD-ROM.  It was included

because it the shape of its histogram is very similar to Sunset’s; however, its spatial

resolution is about twice that of Sunset.

18. Windsails is image 68063 from the Caribbean Professional Photo CD-ROM,

(Corel, Ottawa, Canada, 1994).  It was selected because it contains a smoothly

varying sky as well as many colors widely distributed in the RGB space.

19. Cat is image canada\0563_032.jpg from the World Photo CD-ROM.  It was

selected because it contains natural textures and because the sharp contrast between

the black fir and the gold eyes may be problematic.  In addition, the image is of

interest because its histogram lies very close to greyscale.

20. Woman is image 68014 also from the Caribbean Professional Photo CD-ROM.  It

was selected to determine the difficulty of quantizing people of color versus

Caucasians (Lena and Jhonni).

21. Lena is also from the University of Waterloo’s ColorSet Repertoire.  Like Peppers,

Lena is a classic image used in image compression and image quantization

research.  Lena has many of the same characteristics found in Jhonni.

22. Boy is image Images\Photodisc\Med_res\Ss03085.lrg from the World Photo CD-

ROM.  Like Woman, Boy was selected to add some dimensionality to the color of

the people in the test set.

23. Eye is image Images\Imagekit\People\09ple103.pct from the World Photo CD-

ROM.  It was included because the eye contains both smoothly varying and high

contrast areas.

24. Chapel was taken by Ken Mierzejewski and is courtesy of the United States Naval

Academy Public Affairs Office.  It was selected because it has large spatial and

color resolutions.



16

25. Sailing was taken by David Eckard and is also courtesy of the United States Naval

Academy Public Affairs Office.  Like Chapel, it was selected because it has large

spatial and color resolutions.

2.2 Pre- and Post-Processing Techniques

This section describes pre- and post-processing techniques that are applicable to any

color quantization technique.  Bit-cutting and subsampling are pre-processing techniques

used to speed-up algorithms generally at the expense of image quality.  Spatial dithering

is a post-processing technique that generally enhances image quality with a moderate cost

of time.

2.2.1 Bit-cutting

Heckbert suggested cutting the three least-significant bits from each R, G, B component

[Hec80].  Bit-cutting in this manner uniformly quantizes the RGB color space into a

smaller color space containing 32K (323) possible colors.  Most histogram-based color

quantization techniques bit-cut the image colors prior to inserting them into the

histogram, thus saving space and time at the expense of color accuracy.

Joy and Xiang [JoX93] showed that bit-cutting non-uniformly (three bits from the red

component, two bits from the green component, and four bits from the blue component)

can result in less visual distortion than uniformly cutting three bits from each component

when using the center-cut quantization technique (Section 3.2.1).  Joy and Xiang's non-

uniform bit-cutting also results in a smaller color space containing 32K (32x64x16)

possible colors.  This non-uniform bit-cutting corresponds approximately to the

luminance component, Y, of the YIQ model:
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Row one of Equation 2.5 shows that the relative weights of R, G, and B for the Y

component are 0.299:0.587:0.114 which is approximated by the 32:64:16 ratio achieved

by the non-uniform bit-cutting proposed by Joy and Xiang.

YIQ is used in the United States for commercial color television transmission where

only the Y component is shown on black-and-white televisions.  In contrast, color

televisions display the luminance channel as well as the chrominance channels (I and Q).

The mere existence of black-and-white televisions is testament to the vast amount of

information carried by the luminance channel of an image.  Figure 2.1 shows the Y, I and

Q channels of Jhonni.  Notice how most of the fine details and depth information of

Jhonni is captured by the luminance channel displayed in Figure 2.1.(a).

Row one of Equation 2.5 shows that green and red are relatively important and blue is

relatively unimportant to the brightness of a color.  Joy and Xiang's non-uniform bit-

cutting exploits the following property of the human visual system:  the human eye is

more sensitive to shifts in luminance than in chrominance.  Non-uniform bit-cutting

mimics the human observer’s sensitivity to luminance and places greater importance on

the luminance than on the chrominance of an image.

The number of bits of precision considered in each of the R, G, and B directions

respectively will be denoted by a triple:

p = (r, g, b). (2.6)

By cutting the (8-p.{ r,g,b}) least significant bits from each R, G, B component

respectively, the RGB color space is quantized to a smaller color space denoted as

Rp.rGp.gBp.b. The number of unique Rp.rGp.gBp.b colors in a truecolor image will be

denoted as N(p.r, p.g, p.b).  When N is not subscripted, full 24-bit precision is assumed; that

is N = N(8,8,8).  Table 2.2 shows how bit-cutting reduces the number of unique colors in a

truecolor image, thus saving space and time at the expense of accuracy.
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N(8,8,8) N(7,8,6) N(7,7,7) N(6,7,5) N(6,6,6) N(5,6,4) N(5,5,5)

1 20,302 6,207 10,906 1,628 3,188 431 828

2 34,111 30,477 31,810 13,998 12,100 3,474 2,978

3 9,554 7,145 6,408 4,477 4,120 2,278 2,102

4 19,073 12,582 11,787 6,754 6,416 3,013 2,860

5 31,429 17,580 16,866 6,586 6,295 2,070 1,962

6 21,532 15,654 17,163 6,159 6,465 1,495 1,535

7 28,662 23,075 25,273 11,188 11,767 3,133 3,149

8 19,306 11,649 12,351 3,560 3,436 853 810

9 57,388 33,594 33,507 14,687 14,616 4,067 3,945

10 67,085 46,399 46,735 13,161 12,779 2,578 2,460

11 40,565 29,412 28,408 11,399 10,906 2,746 2,576

12 64,112 30,109 27,584 10,479 9,239 3,005 2,645

13 96,486 70,748 71,365 25,257 25,025 6,324 6,218

14 73,939 52,078 53,246 17,812 17,329 3,442 3,480

15 71,687 51,897 53,356 17,352 17,158 3,576 3,527

16 111,344 79,187 79,098 23,755 23,235 4,712 4,564

17 23,676 7,778 6,673 2,539 1,716 788 492

18 86,008 68,168 72,663 26,704 26,233 6,047 5,873

19 95,916 29,924 29,889 7,693 7,628 1,877 1,881

20 94,279 73,614 78,059 29,739 29,458 6,738 6,491

21 148,279 54,063 53,812 13,139 13,018 2,650 2,596

22 180,274 58,942 58,285 15,733 15,336 3,314 3,206

23 267,246 84,531 84,390 19,536 19,436 3,758 3,694

24 266,764 145,488 140,071 38,211 36,748 8,110 7,648

25 177,844 57,592 58,213 13,313 13,296 2,389 2,368

Max 267,246 145,488 140,071 38,211 36,748 8,110 7,648

Min 9,554 6,207 6,408 1,628 1,716 431 492

Avg 84,274 43,916 44,317 14,194 13,878 3,315 3,196

Table 2.2:  Bit-cutting Statistics of the Image Test Set.



(a)  Y (b)  I (c)  Q

Figure 2.1:  YIQ channels of Truecolor Image Jhonni.  (a) Luminance channel Y and chromaticity channels (b) I and (c) Q
of truecolor image Jhonni.
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(a)  RGB, N = 86,008 (b) R5G6B4, N(5,6,4) = 6,047

Color Plate 2.3:  Histogram of Truecolor Image Windsails.  Two 3D visualizations of
the Windsails histogram in (a) 24-bits and (b) 15-bits of precision.

Color Plate 2.3 shows two 3D visualizations of the Windsails histogram.  Notice that

the number of unique colors stored in the 15-bit histogram (Color Plate 2.3.b) is a small

fraction (0.0703) of that stored in the 24-bit histogram (Color Plate 2.3.a).

Many color quantization researchers find 15-bits or 18-bits of precision (R5G5B5,

R5G6B4, R6G6B6, or R6G7B5 ) to be a satisfactory tradeoff between space, time, and

accuracy.  However, Shufelt [Shu95] showed that working with less than 21-bits of

precision can noticeably impair the quality of the quantized images.  Thus, a major

contribution made by this dissertation is a fast color quantization technique for full 24-bit

precision.

2.2.2 Spatial Dithering

Spatial dithering is a remarkable technique that can dramatically enhance the perceptual

quality of color-quantized images [FlS76, JaJN76 , Knu86, Uli88, and GeRS93].

Dithering is also referred to as digital halftoning: a process commonly used by

newspapers to print greyscale pictures using only black and white dots.  In the case of
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color images, dithering is used to display truecolor images using pixels consisting of K

different colors.  There are two basic ways of incorporating dithering into a color

quantization algorithm:

(i) modulate the truecolor image with high frequency noise prior to quantization, or

(ii) disperse the quantization error to neighboring pixels.

Floyd-Steinberg error diffusion is the most common form of dithering used by color

quantization algorithms and is quite simple to implement. The image is quantized from

left to right, top to bottom.  The error (Section 2.4) between the original pixel color and

the quantized pixel color is dispersed to neighboring pixels not yet quantized using the

proportions given in Figure 2.2.  Dithering usually leads to images that appear to contain

less error because the color error has been spatially dispersed as high frequency noise that

is less perceptible to the human observer.  Thus the eye’s powerful spatial integration of

the colors and the noise contained in a neighborhood of pixels creates the illusion of more

colors and tends to smooth the contouring artifacts found in color quantized images.

E 7/16

3/16 1/165/16

Figure 2.2:  Floyd-Steinberg Error Diffusion Filter.  E represents the error between I(x,
y) and IQ(x, y).  E is dispersed to neighboring pixels using the proportions given in the
boxes.
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(a) K=64 (b) K=64, Dithered, ∆t=0.42 s

(c)  K=128, Dithered, ∆t=1.53 s (d)  K=64, Dithered, ∆t=1.51 s

Color Plate 2.4:  Floyd-Steinberg Error Diffusion.  RGBCube is (a) quantized to K=64
colors and (b) dithered. The two quantized images of Jhonni in Color Plate 1.1.(b and c)
have been dithered in (c) and (d), respectively. ∆t is the additional amount of time
required to perform the dithering.
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Color Plate 2.4.(a and b) beautifully illustrate the power of error diffusion.  There is an

inordinate amount of contouring visible when RGBCube is quantized to 64 colors. Floyd-

Steinberg error diffusion smoothes the contouring resulting in an image which is visually

quite acceptable.  Note that each image contains only 64 colors, but that the dithered

image gives the illusion of many, many more.  The snake-like patterns visible in Color

Plate 2.4.b are the major drawback of Floyd-Steinberg error diffusion. Color Plate 2.4.(c

and d) show how the contouring in Color Plate 1.1.(b and c) can be nearly eliminated

using Floyd-Steinberg error diffusion. Liu and Chang [LiC95] proposed using the

morphological erosion operator to extract boundary pixels and to thereby selectively

apply error diffusion only where abrupt changes in color occur.

The time required to perform Floyd-Steinberg error diffusion is proportional to the

number of pixels in the truecolor image; ∆t in Color Plate 2.4 is an empirical

measurement of this quantity.  Note that the additional amount of time required to dither

Jhonni is about 3.6 times that of RGBCube, and that this corresponds to the observation

that the spatial resolution of Jhonni is about 3.7 times that of RGBCube.

Since dithering can dramatically improve the quality of quantized images, several

researchers have looked at color quantization in a slightly different way.  Instead of

selecting the K best colors to directly represent the truecolor image, some algorithms

select the K best dither colors to represent the truecolor image [HoD86, Gol91, LeTT96,

AkOY96, AkOA97, and ScD97].  The key modification promoted by the quantizers

designed specifically for dithering is to enlarge the convex hull of the dither colors to

provide a larger color domain for the ditherer to blend colors.

2.2.3 Subsampling

When building the histogram of a truecolor image, often one can obtain the “essence” of

the image without examining every pixel.  That is, one can use a subset of the image

pixels called the training set, to build the histogram.  Many of the non-hierarchical

methods are extremely slow, and subsampling is one method commonly used to speed up

these algorithms. The training set may be chosen randomly yielding a nondeterministic

algorithm.  Dixit [Dix91] randomly samples a fixed number of pixels (1024) to

implement a fast pairwise nearest neighbor (PNN) algorithm (Section 3.1).  Verevka and
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Buchanan [VeB95] advocate sampling the image at decreasing step sizes

(1009,757,499,421,307,197,…) when refining their representative colors using the Local

K-means algorithm.  They report very good results by sampling only about 10% of the

pixels in the image.  Another common method for obtaining the training set is to examine

every nth pixel in every mth row.  For example, Goldberg [Gol91] found that sampling

one fourth the image (by examining every other pixel in every other row) was sufficient

for their variation on the MinMax algorithm (Section The MinMax Algorithm).

2.3 False Contour Reduction

It is well known that the human visual system is more sensitive to errors in low activity

(smooth) regions than to errors in high activity (busy) regions.  Thus the premise of the

techniques discussed in this section is to move quantization error from low frequency

areas to high frequency areas so that the error will be less visible to the human eye.

2.3.1 Spatial Activity Weighting

Various methods for weighting the importance of a pixel based on the spatial activity of

the area of the image where the pixel appears have been incorporated into color

quantization algorithms.  In all cases, the pixel’s importance (activity weighting) is

inversely proportional to the activity level of the region where it appears in the image.

Pixel-based methods store an activity weighting for each pixel in the image [OrB91,

ChTM94, KiLLH96a, KiLLH96b].  Histogram-based methods must combine the activity

weightings of all pixels with the same color.  Some researchers average the activity

weightings [BaAB94, PaLKLH96], while others use the maximum [BaA91a].  This

dissertation proposes using the sum.  Some methods speed the calculation of activity

levels by computing an activity level for each (4x4 or 8x8) spatial block of the image and

then assigning the same level to all pixels in the block [BaAB94, ChTM94, KiLLH96a,

KiLLH96b].

This dissertation calculates the activity level of a pixel in a manner similar to

Balasubramanian et al. [BaAB94].  The activity level a(x,y) of a pixel at row x, column y
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of a truecolor image I is measured by the magnitude of the luminance gradient of the

pixel given by:

a(x,y) = | Y(I(x,y)) - Y(I(x-1,y)) | + | Y(I(x,y)) - Y(I(x,y+1)) |, (2.7)

where Y is the luminance of the pixel calculated using row one of Equation 2.5, and

assuming x > 0 and y < H-1.  When x is 0, the first term of Equation 2.7 is | Y(I(x,y)-

Y(I(x+1,y) | and when y is H-1, the second term of Equation 2.7 is | Y(I(x,y)- Y(I(x,y-1) |.

This dissertation calculates the activity weighting w(x,y) of a pixel at row x, column y of a

truecolor image using:
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The author conducted a considerable amount of experimentation with various exponents

and cut-off values to derive Equation 2.8.  Section 3.3 shows that Equation 2.8 does a

good job of accurately weighting the relative importance of a pixel based on its activity

level.    When the activity level is extremely low (0 or 1) the pixel is considered to be part

of a flat region; therefore, it is considered less important than when its activity level is

low (2).   When the activity level is greater than 16, the pixel is considered to be part of

an edge.  Thus to prevent the blurring of edges, the activity weighting of a pixel is never

less than 1/161.25.

Color Plate 2.5 illustrates the activity weighting for truecolor images Shufelt,

RGBCube, Solids, and Windsails.  Notice how the smooth regions are given more weight

(lighter) than the textured (darker) regions, thus enabling quantization errors to be hidden

in areas where the error will be less noticeable to the human eye.  Unfortunately, in

images such as RGBCube, all of the non-background pixels are weighted approximately

equally very important because they all belong to a very smoothly varying region.  Thus,

activity weighting does little to improve quality of the quantized image.  Images of this

nature are very difficult to quantize; however, dithering is an excellent option for

improving the visual quality of the quantized images.
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(a) Shufelt

                
(b) RGBCube

   
(c) Solids

   
(d) Windsails

Color Plate 2.5:  Activity Weighting.    Activity weighting of (a) Shufelt, (b) RGBCube,
(c) Solids and (d) Windsails.  The intensity of each pixel is scaled by the activity
weighting of the pixel.
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In histogram-based, non-activity weighted algorithms, the importance of a color is

based solely upon its frequency.  That is, colors that occur more often in the image are

given higher importance.  This dissertation proposes to weight the importance of a color

based upon its frequency and the activity level of the locations where the pixels occur by

summing the activity weightings of pixels with the same color.  Thus, the weighted

histogram Hw of a truecolor image I is defined as a total function:

Hw: RGB → § (2.9)

where Hw(c) is the total activity weighting of the pixels in I with color c.  By simply

substituting Hw for H, any histogram-based algorithm becomes activity weighted.  Thus,

a non-activity weighted, histogram-based algorithm may be viewed as an activity

weighted, histogram-based algorithm in which all pixels are equally weighted as one.

Sections 3.3, 0 and 5.2.2 show that activity weighting in this manner is a fast and

effective way to enhance the quality of images produced by histogram-based color image

quantization techniques.

2.3.2 Feedback-based Quantization

Xiang and Joy [XiJ94a and XiJ96] proposed a general feedback framework for improving

the representative colors.  The fundamental steps involved in their feedback-based

quantization technique are delineated in Figure 2.3.

1) Quantize the original truecolor image I.

2) Detect visible distortion in the quantized image IQ.

3) Use feedback to adjustment the weights of the pixels in I.

4) Repeat steps 1-3 until no further improvements can be made.

Figure 2.3:  Pseudocode  for Feedback-based Color Quantization.

Xiang and Joy [XiJ94a and XiJ96] use their agglomerative clustering technique [XiJ94b]

in step 1 of Figure 2.3; however, any activity weighted technique may be used. Xiang and

Joy [XiJ94a and XiJ96]  detect visible distortion via a false contour map.  The weight of a
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pixel in I is then increased based on the severity of the false contour and the degree of

quantization error.  In practice, Xiang and Joy [XiJ94a and XiJ96] found no reliable

method for automatically determining when no further improvements could be made.

Thus, step 4 was implemented by running the algorithm for a block of iterations, viewing

the sequence of quantized images, and resuming execution for another block of iterations

based on the human observer’s judgement.  Because the feedback-based algorithm

requires human interaction and large amounts of time (1-2 hours), this dissertation does

not further investigate feedback-based quantization techniques.

2.3.3 Texture Analysis

Shufelt [Shu95 and Shu97] proposed a novel texture analysis technique for reducing false

contours.  His technique uses co-occurrence statistics of the quantized image to identify

two classes of colors:  contouring colors and compressible color pairs.  Contouring colors

are suspected of creating objectionable contouring artifacts in the quantized image, while

it is believed that compressible color pairs may be merged with out producing visible

artifacts in the quantized image.  The representative colors are then adjusted by splitting

contouring colors and merging compressible color pairs.  This process may be repeated

until the texture analysis process fails to find any contouring colors or compressible color

pairs.

The amount of correction required by the texture analysis is dependent upon the

initial algorithm used to select the representatives.  Shufelt uses Heckbert’s median-cut

algorithm with p=(5,5,5) [Hec80].  It is well-known that many quantization techniques

outperform the median-cut algorithm in terms of image quality (Section 3.3).

Interestingly, Shufelt discovered that the improvement gained by texture analysis was

comparable to the improvement gained by using full 24-bit precision.  Given these

observations, this dissertation does not further explore texture analysis, but rather focuses

on developing methods for efficiently using full 24-bit precision.
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2.4 Distortion Metrics

The goal of color image quantization is to minimize the amount of distortion perceived by

a human observer between the truecolor image I and its color-mapped image IQ.

Unfortunately, the wondrous sophistication of the human visual system complicates the

quantification of a perceptually-based distortion metric. Image compression and

enhancement researchers have explored the subjective role of the observer in evaluating

image quality and have proposed image metrics which attempt to quantify image quality

[Sak77, Lim79, Gir83, Dal83, Lu91, Hul90, and GrW91].  However, the quantification of

a perceptually-based image metric remains largely an unsolved problem. Thus

researchers have been forced to concede and use distortion metrics which may not

adequately capture the visual distortion [GoW92].  A few of the most common distortion

metrics are described in the following sections.

2.4.1 RMSE

A common distortion metric used by image processing researchers is the root mean-

square error, RMSE:
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where d(I(x,y), IQ(x, y)) measures the distance between the color of the pixel at column x,

row y of the truecolor image I and the color-mapped image IQ.  The most common

distance function used is the Euclidean distance.  The Euclidean distance between two

colors x, y ∈ RGB is
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In 1982 Garey, Johnson and Witsenhausen [GaJW82] showed that the selection of R

which produces a quantized image that minimizes Equation 2.10 is NP-complete.  Thus,

it is unlikely that we will find an efficient algorithm to solve the color quantization

problem.  Hence, researchers have concentrated their efforts on developing heuristics for

approximating the color quantizer that minimizes RMSE.



30

2.4.2 WRMSE

RMSE assumes that all pixels are equally important, whereas in activity weighting

this assumption is no longer valid.  Thus, the weighted RMSE (WRMSE) is a metric that

weights the differences between the pixels in I and IQ according the activity weighting of

the pixels in I:

( ) ( )( )

∑∑

∑∑
−

=

−

=

−

=

−

=
⋅

=
1

0

1

0

1

0

1

0

2

),(

),(,,,

),(
W

x

H

y

W

x

H

y

yxw

yxwyxIyxId

IIWRMSE
Q

Q (2.12)

Sections 3.4, 4.3.2, 5.1.2, and 5.2.2 show that WRMSE is much better than RMSE in

measuring the visual distortion between I and IQ.

2.4.3 SNR

The signal-to-noise ratio (SNR) is another common distortion metric used by image

compression researchers:
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Here, the truecolor image is considered to be the signal, and the distance between the

truecolor image and the quantized image is considered to be noise.  As with RMSE, SNR

will be measured in both RGB and YIQ.

2.4.4 Maximum Diameter

One objective commonly used in cluster analysis is to minimize the maximum diameter

of the individual clusters of a K-split S:

maxDiam(S) = max { diam(sk) | sk ∈ S } (2.14)

where
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diam(sk) = max { d2(x, y) | x, y ∈ sk  }. (2.15)

Section 4.2.3 shows that maxDiam is not a reasonable metric for color quantization

because it does not correspond well to subjective evaluation.

2.4.5 Perceptually Uniform Color Spaces

The RGB color space is not ideal for color quantization because it not perceptually

uniform.  That is, it is not possible to predict the perceptual closeness of two RGB colors

from the RGB Euclidean distance between them.  What is needed is a color space where

the Euclidean distance between two colors is proportional to the perceptual distance

between them.  Two such color spaces called L*u*v*  (CIELUV) and L*a*b*  (CIELAB)

were defined in 1976 by the Commission Internationale de l'Éclairage (CIE).  Wysezecki

and Stiles [WyS82] provide a detailed discussion of these two color spaces.

Transformation from RGB into these color spaces is nonlinear and requires a cube root

computation.

Gentile, Allebach and Walowit [GeAW90] found that using CIELUV provided no

significant improvement over RGB for several adaptive quantization techniques. Shufelt

[Shu95] studied alternative color spaces (HSV, HLS [FoVFHP93], and CIELAB) for the

median-cut quantization technique (Section 3.2.1).  For his 64 image test set, Shufelt

concluded that RGB performed best most often.  In addition, because of the time-

consuming cube root function required to transform each pixel in the image from RGB to

CIELAB, Shufelt’s results indicate that the time required for quantization in CIELAB

was about four to five times more than RGB.  Connolly and Fliess [CoF97] describe

several approximation techniques for the transformation from RGB to CIELAB.  The

fastest method proposed used a look up table, provided medium accuracy, and required

up to 32KB of storage.  Given these results, this dissertation focuses only on the RGB

color space and explores other venues for producing high quality color-mapped images

quickly.

Even so, Figure 2.4 illustrates how the quantization techniques described in this

dissertation may be extended from the RGB color space to a perceptually uniform color

space such as CIELUV or CIELAB.
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I (CIEXYZ) I (CIELUV or CIELAB )

I  (CIELUV or CIELAB )I (CIEXYZ)

I (RGB)

I  (RGB)

I  (RGB)

Q

Q′ =  Q :  r → L* , g → u*, b → v*     or

Q′ =  Q :  r → L* , g → a*, b → b*  

M

M -1

Q

Q′ Q′ Q′

Figure 2.4:  Color Quantization in Perceptually Uniform Color Spaces.  M is a 3x3
transformation matrix determined by chromaticity data for the monitor’s phosphors.  The
transformations between CIEXYZ, CIELUV and CIELAB are provided in [WyS82].

2.5 Strategy for Empirical Analysis

Ideally we are in search of both a color quantizer that minimizes perceived quantization

artifacts and also an objective method for measuring these artifacts.  It is not practical to

physically examine and compare each color-mapped image to determine the magnitude

and nature of visible distortion.  Therefore, the objective distortion metrics described in

Sections 2.4.1-2.4.4 are used to compare the fidelity of the color quantization techniques.

RMSE and WRMSE are useful guides for comparing the quality of quantizers, but the

human eye remains the final judge.  Therefore, the author will subjectively evaluate a

small subset of the quantized images produced by the empirical study.  In addition, this
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dissertation presents interesting examples of color-mapped images produced by the

empirical study so that readers may observe the quality of the quantized images for

themselves.

All of the color-mapped images were generated using LindyHop.  LindyHop used the

ANSI C clock  function to capture the empirical timing data reported in this dissertation.

LindyHop was compiled using gnu g++ version 2.8.2 with optimization and was

executed on a SUN Ultra 1 running Solaris 2.6 with 256 MB of RAM.   Empirical timing

data was captured when the machine was otherwise idle; that is, no other user processes

were running.  Since the measurements obtained from clock  are subject to chance

fluctuations, they will be treated as indicators of relative timing differences, not absolute

truth.

This dissertation studies the interaction between K, p, time requirements, RMSE,

WRMSE and subjective image quality. The primary goal of this dissertation is to study

algorithms, techniques and parameters that produce high quality quantized images.

Therefore, this dissertation primarily studies the effects of various algorithms and

techniques for K=256 and p=(8,8,8).  However, empirical results for other values of K

and p will be included for completeness and comparison.  The analysis is simplified by

not considering the potential speed-ups and the probable corresponding degradation in

image quality resulting from subsampling (Section 2.2.3).  The analysis is further

simplified by not considering the potential improvement in image quality and the

corresponding increase in quantization time resulting from dithering (Section 2.2.2).
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Chapter  3 

Hierarchical Methods

Hierarchical methods construct a tree depicting the relationship among the colors in the

truecolor image I.  Hierarchical clustering techniques that construct a tree from the

bottom up (leaves to root) are called agglomerative, while hierarchical methods that

construct a tree from the top down (root to leaves) are called divisive. Color Plate 3.1

illustrates two hierarchical clustering trees for (a) N=256 and (b) N=64 colors.

(a)  N=256 (b)  N=64

Color Plate 3.1:  Hierarchical Clustering Trees. The size of each node is scaled by the
frequency of the color.  The number of leaves in the tree is (a) 256 and (b) 64.
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The hierarchical clusterings are depicted by binary trees that have been drawn using the

approach described in [Rei98]:

• Nodes on the same [odd/even] level are aligned in the [x/z] direction.

• On [odd/even] levels, left subtrees are positioned to the [left/behind] their parent;

right subtrees are positioned to the [right/in front].

• Parents on [odd/even] levels are centered in the [z/x] direction between its two

children.

• Odd level edges between [left/right] subtrees and their parents are [light blue/blue];

even level edges are [light green/green].  This use of color helps the user to orient the

visualization in 3D space.

• Subtrees are drawn isomorphically and symmetrically.

Notice that the nodes are nested.  That is, from the agglomerative point of view, once two

nodes have been merged they are permanently joined into a new node that may be

merged in the future.  From the divisive point of view, once a group of nodes have been

divided, they are permanently separated and may be treated independently for future

subdivisions [And73].  

The first two sections describe hierarchically agglomerative and divisive methods for

color quantization respectively.  The chapter concludes with a comprehensive empirical

analysis of these algorithms.

3.1 Agglomerative

The fundamental steps in the hierarchically agglomerative method originally proposed by

Ward [War63] are delineated in Figure 3.1.  Recall that C is the set of N unique colors in

a truecolor image I.
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1) Find two “optimal” colors in C to merge, ci and cj.

2) Remove ci and cj from C.

3) Merge ci and cj into cij.  Add cij to C.

4) Repeat steps 1-3 until there are K colors in C.  C is the set of K representative

colors for the truecolor image.

Figure 3.1:  Pseudocode for Agglomerative Color Quantization.

This form of agglomerative clustering is commonly referred to as pairwise nearest

neighbor (PNN) clustering because the cost of each pairwise merger must be evaluated to

find the optimal pair of colors to merge in step 1 of Figure 3.1.

Equitz [Equ89] applied Ward’s general-purpose hierarchically agglomerative

clustering algorithm to vector quantization and derived a specific formula for selecting

the optimal colors to merge in step 1 of Figure 3.1.  The optimal colors selected are two

colors whose merger will result in the minimum increase in total squared error, TSE.

Figure 3.1 shows a clever method for calculating the increase in total squared error

(TSE↑) induced by merging two colors and is due to [Equ89].  Figure 3.1 has been

generalized to enable the method of spatial activity weighting proposed in Section 2.3.1.

Theorem 3.1: 
2

ji
ji

ji cc
ww

ww
TSE −

+
=↑

Let H be a histogram for a truecolor image I in RGB space. Let ci and cj be two colors in

H.  Let wi = H(ci) and wj = H(cj) be the weight associated with ci and cj.  If H is activity

weighted, then w represents total activity weighting; otherwise, it represents frequency.

Let TSEi and TSEj be the TSE associated with ci and cj respectively.  Let cij be the cluster

formed by merging ci and cj. The weight, value (mean), and total squared error of cij are

defined as

jiij www += (1)
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Then the increase in total squared error that results from merging ci and cj into cij
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Proof:
From Equation (4), the increase in TSE that results from merging ci and cj into cij is
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Using the definitions of wij and µij, Equations (1-2), Equation (5) is expanded to
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Thus, the only statistics required to calculate the increase in TSE induced by merging two

colors are the value and weight of each color.  Several researchers have studied
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agglomerative color image quantization [Dix91, BaA91a, BaA91b, XiJ94b, XiJ94a,

JoX96, PaLKLH96, VeGS97].  The method of activity weighting proposed by this

dissertation differs from than the methods previously proposed by Balasubramanian et al.

[BaA91a and  BaA91b] :

),max(
2

jiji
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wwcc

nn

nn
TSE −
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=↑ , (3.1)

and by Park et al. [PaLKLH96]:
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2
, (3.2)

where ni and nj represent frequency and wi and wj represent activity weighting.  Thus, in

both of the previous methods for activity weighted agglomerative cluster both frequency

and activity weightings of the colors must be maintained.  However, in the activity

weighted method advocated by this dissertation, the frequency of the colors does not need

to be maintained.

3.1.1 Fast PNN using k-d Trees

The primary drawback of agglomerative clustering is the time required by step 1 of

Figure 3.1 to find the pair of colors to merge.  Since the steps 2-4 of Figure 3.1 require

constant time and are repeated N-K times, they require Ο(N-K) time.  Unfortunately, the

first step of Figure 3.1 requires that TSE↑ be calculated |C|2/2 times.  Since |C| is initially

N and is decremented by one each time the loop is executed, the time required for the

PNN algorithm is
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One of the main contributions of Equitz [Equ89] paper is the use of a k-d tree to speed the

nearest neighbor searches in step 1 of Figure 3.1.  The fundamental steps of the fast PNN

algorithm proposed by Equitz are delineated in Figure 3.2.
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1) Store the histogram of I in a k-d tree T.  Let the maximum allowable bucket size

be M.  Let B be the number of buckets in the k-d tree.

2) For each bucket bi, find two “optimal” colors in bi to merge, cii and cij.

3) For a fixed fraction (γ) of the B buckets, remove cii and cij from bi. Merge cij and

cij into ciij .  Add ciij  to T.

4) If necessary, rebalance T.  Split buckets containing more than M colors and merge

small buckets.

5) Repeat steps 2-4 until there are K colors in T.  T is the set of K representative

colors for the truecolor image.

Figure 3.2:  Pseudocode for Fast PNN Color Quantization.

The histogram of the truecolor image is first stored in a k-d tree whose maximum

allowable bucket size is M.  The nearest neighbor searches are sped up by limiting the

search to pairs of colors in the same bucket of the k-d tree.  The algorithm is further speed

up by merging in each iteration a fixed fraction of the nearest neighbor pairs found in step

2 of Figure 3.2.   The agglomerative color quantization algorithm proposed by

Balasubramanian et al. [BaA91a and  BaA91b] is actually an activity weighted version of

Equitz’s fast PNN algorithm.

3.2 Divisive

Heckbert’s median cut algorithm [Hec80 and Hec82] was the first of a plethora of

histogram-based, divisive algorithms proposed to select representative colors [WuW85,

WaWP88, WaPW90, OrB91, Wu91b, Wu92, JoX93, RoG95, and BrB97].  The divisive

algorithms statistically divide a pre-built histogram of I into K partitions; the centroid of

each partition becomes one of the K representative colors.  The fundamental steps

involved in histogram-based divisive techniques are delineated in Figure 2.3.
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1) Find the smallest RGB cube encompassing the colors in the truecolor image.

2) Repeatedly divide the RGB subpartition with the worst “measure” until you have

divided the RGB cube into K subpartitions.

3) Select the centroids of the K subpartitions as the K representative colors for the

truecolor image.

Figure 3.3:  Pseudocode  for Histogram-Based Divisive Techniques.

Pixel-based divisive techniques differ from the histogram-based divisive techniques

by dividing the pixels in the image, rather than the colors in the image [ChTM94,

KiLLH96a, and KiLLH96b].  Pixel-based divisive techniques enable each pixel to be

weighted based on the context of its location in the image.  This dissertation does not

explore pixel-based divisive techniques; hence, from this point forward histogram-based

divisive techniques will be referred to simply as divisive techniques.

Algorithms using the divisive approach must make several decisions.  First a metric is

needed to decide which partition (W) will be divided in step 2.  Once W has been

selected, the divisive approach must decide into how many partitions to divide W.

Finally, the divisive approach must decide how to orient and where to position the

partition plane(s).
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Partition Selection
N Greatest number of colors.

P Greatest number of  pixels.

R Greatest range in R, G or B.

σ2 Greatest weighted variance.

σx
2 Greatest weighted variance in R, G or B.

E↓ Greatest reduction in error for a given partition plane orientation and
position.

λ1 Greatest eigenvalue of the covariance matrix.

Number of Subpartitions
2 Split node into two partitions (k-d tree).

8 Split node into eight partitions using 3 orthogonal split planes (Octree).

N Split node into N > 2 partitions using N-1 parallel split planes.

Partition Plane Orientation
R Orthogonal to the R, G or B axis with the greatest range.

σ 
2 Orthogonal to the R, G or B axis with greatest weighted variance

E↓ Orthogonal to the R, G or B axis that maximizes the reduction in error for a
given partition plane position.

µ3R Orthogonal to the line between µ3R  and µ.

e1 Orthogonal to the first principal component of the covariance matrix.

Partition Plane Position
CD Center of the domain.

C Center of the range.

M Weighted median.

µ Weighted mean.

µ3R Radius weighted mean, one or (three)-dimensional.

t Optimal position to maximize the reduction in projected (1D) error.

⊥ Optimal position to maximize the reduction in error for a family of parallel
partition planes perpendicular to the R, G, or B axis.

⊥e Optimal position to maximize the reduction in error for a family of parallel
partition planes perpendicular to an eigenvector.

Table 3.1:  Taxonomy of Statistics Used by Divisive Algorithms.
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Table 3.1 is a taxonomy of the various statistics used at the major decision points of

the divisive approach.  This taxonomy is a modification of a similar taxonomy developed

by Sproull [Spr91] for classifying k-d tree construction methods.  For example, using the

proposed taxonomy, a divisive algorithm classified as P2RM is one that selects the

partition with the largest number of pixels.  The selected partition is divided into two

subpartitions using a partition plane orthogonal to the R, G, or B axis with the largest

range.  Finally, the partition plane is positioned at the median of the R, G, or B axis with

the largest range.

Thus, the divisive approach is a general framework for a large number of algorithms.

Many of the possible divisive algorithms have been previously studied [Hec80, Hec82,

WuW85, WaWP88, WaPW90, OrB91, Wu91b, Wu92, JoX93, ChTM94, RoG95,

KiLLH96a, KiLLH96b and BrB97]. This dissertation proposes a 3D heterogeneous data

structure to implement a hybrid divisive technique.  Therefore, the remainder of this

chapter is devoted to the description and analysis of specific divisive techniques and will

make Table 3.1 more clear.

3.2.1 Median, Center, Mean and RWM-Cut

The algorithms discussed in this section position the partition plane orthogonal to one of

the R, G, or B axes, and select the partition plane position based on the projected 1-

dimensional distribution of the selected partition plane orientation.  The light R, G, and B

curves in Figure 3.5 show the projected R, G, and B distributions of Windsails.  The

median, center, mean and radius-weighted mean (RWM) of the R, G, and B distributions

are indicated on the heavy horizontal R, G, and B lines in Figure 3.5.  Let wi be the

weight level i occurs a 1-dimensional distribution with range [l..u].  The definition of

weight has been generalized to accommodate the method of spatial activity weighting

proposed in 2.3.1.  That is, if the distribution is activity weighted, then wi represents total

activity weighting; otherwise, it represents frequency.  The weight (W), median (m),

center (c), mean (µ), and RWM (µR) are defined as follows:
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The oft-cited median-cut algorithm was first described in Heckbert’s B.S. thesis [Hec80]

as the R2RM divisive algorithm.  In Heckbert’s later paper describing the median-cut

algorithm [Hec82], the method for selecting a partition for subdivision is not made clear.

The premise of the median-cut algorithm is to partition the histogram such that each

partition represents approximately the same number of image pixels.  Thus, the literature

most commonly cites the median-cut algorithm as the P2RM divisive algorithm.

Wu and Witten [WuW85] described a divisive algorithm that is implemented slightly

different from the divisive technique given in Figure 3.3.  The fundamental steps in their

approach are outlined in Figure 3.4.

1) Find the smallest RGB cube, W, encompassing the colors in the truecolor image.

2) Divide W into two subpartitions W1 and W2.  Split  K into K1 and K2 based on a

worst measure of the two subpartitions. K1 and K2 act as quotas for W1 and W2.

3) Recursively divide (W1, K1) and (W2, K2).  Subdivision terminates when either K

is one, or when the size of W is less than a predetermined minimal size.  In the

latter case, the excess quota is redistributed to remaining partitions.

4) Select the centroid of each of the K subpartitions as the K representative colors for

the truecolor image.

Figure 3.4:  Pseudocode  for Wu and Witten’s Recursive Divisive Technique.
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Figure 3.5:  Projected Distributions for Windsails, p=(8,8,8).  The light R, G, and B
curves show the projected R, G, and B distributions.  The median, center, mean and
radius-weighted mean of the R, G, and B distributions are indicated on the heavy
horizontal R, G, and B lines.

0

1000

2000

3000

4000

5000

1 33 65 97 129 161 193 225
Level

T
ot

al
 A

ct
iv

ity
 W

ei
gh

tin
g

¡¡  Median (m) ��  Center  (c) SS  Mean  (µ) zz  RWM  (µR)
Red 46 127 75 99

Green 67 125 72 86

Blue 67 124 80 88
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Chang and Chang [ChC93] proposed similar quota subdivision method that divided into

eight instead of two pieces.  Like the median-cut algorithm, Wu and Witten divide W into

two subdivisions using a partition plane orthogonal to the R, G, or B axis with the

greatest range.  They allocate K based on the volume (V) and the cardinality (N) of the

two subpartitions:

K1 = K
CV

CV

CN

CN
⋅








−+

)(

)(
)1(

)(

)( 11 ρρ and K2 = K-K1, (3.9)

where ρ ∈ [0,1], usually chosen in the range [0.5, 0.7].  Their algorithm is often cited as a

variance-based algorithm because they claim Equation 3.9 approximates splitting K

based on the variance of the two subpartitions.  In this author’s opinion, this claim is not

fully justified, but illustrates the difference a decade has made in computer technology.

Finally, Wu and Witten use a “center adjusted mean”, rather than the actual mean, for

positioning the partition plane.  In particular, they use:

µc = µ +η(c-µ), (3.10)

where η is a constant in the range [0.05, 0.25].  Because [0.05, 0.25] is a large range, this

dissertation has opted not to explore the utility of a center-adjusted mean; that is, in this

dissertation, η=0.  For ease of coding and comparison with other divisive algorithms, this

dissertation has implemented the spirit of Wu and Witten’s mean-split algorithm

[WuW85] using the divisive approach attributed to Heckbert [Hec80].  This dissertation

will refer to the revised implementation of the mean-split algorithm as the mean-cut

algorithm.

Joy and Xiang [JoX93] proposed a simple modification to Heckbert’s original

median-cut algorithm:  split at the center instead of the median.  Thus, this R2RC

divisive algorithm is appropriately named the center-cut algorithm.

Yang and Lin [YaL96] proposed a variance-based algorithm that positions the

partition plane at the RWM. Thus, this σ22σ2µR divisive algorithm is appropriately

named the RWM-cut algorithm.
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3.2.2 Variance Minimization

Heckbert briefly describes a greedy variance-minimization technique in his B.S. thesis

[Hec80].  His suggestion was to consider all possible split planes orthogonal to the

dominant direction (assumed to be range) and calculate the sum of the variance of the

two subpartitions induced.  The point that induces the smallest sum is selected to be the

split point.  Heckbert did not implement his idea of greedy variance-minimization,

however several variations on the theme have been studied [WaWP88, WaPW90,

Wu91b, LiC94, LiC95, BrB97].

Liu and Chang [LiC95] proposed a greedy “lookahead” strategy for selecting the

partition to be subdivided.  Given that a partition will be divided into two subpartitions,

and given a method for orienting and for positioning the cut plane, the partition selected

for further subdivision is the one that will result in the most reduction in error.  This

strategy for selecting a partition is denoted as E↓.  Theorem 3.2 shows a clever method

for calculating the reduction in error induced by a two-way split and is due to [LiC95].

Theorem 3.2 has been generalized to enable the method of spatial activity weighting

proposed in Section 2.3.1.

Theorem 3.2: 
22

2211 llllll WWTSE µµµµ −+−=↓

Let S be a k-d tree containing a histogram, H, of a truecolor image, I, in RGB space. Let

wc = H(c) be the weight associated with c.  If H is activity weighted, then wc represents

total activity weighting; otherwise, it represents frequency. Let l be a leaf in S.  The

weight, mean, and total squared error of l are defined as
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where nc = H(c) is the number of times the color c occurs in I.  Then the reduction in total

squared error that results from dividing l into two leaves l1 and l2 is

22

2211 llllll WWTSE µµµµ −+−=↓ .

Proof:
Let L be the set of leaves in S.  Then the TSE in S before splitting l is

.l

li
Li

i
Li

i TSETSETSETSE +== ∑∑
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(4)

Clearly, the TSE in S after splitting l into two leaves l1 and l2 is

.
21 ll
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i TSETSETSEETS ++=′ ∑
∉
∈

(5)

Therefore, from Equations (4) and (5), the reduction in TSE that results from

dividing l into two leaves l1 and l2 is

.
21 lll TSETSETSEETSTSETSE −−=′−=↓ (6)

Since l is split into two leaves, l1 and l2, the TSE at l can be computed as
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Using the identity, || x+y ||2 = || x ||2 + 2⋅xy + || y ||2, Equation (7) is expanded to:
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Using the definitions of W, µ, and TSE of a leaf, Equations (1-3), Equation (8) is

reduced to
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Hence, from Equations (6) and (9)

22

2211 llllll WWTSE µµµµ −+−=↓ . �

Liu and Chang select the mean as the partition position and then perform an

additional level of greedy lookahead to decide which of the R, G, or B axis to cut with an

orthogonal plane.  Not surprisingly, they choose the direction that maximizes the

reduction in error.  Thus, the greedy algorithm proposed by Liu and Chang [LiC95] uses

two levels of lookahead and Theorem 3.2 to derive the E↓2E↓µµ divisive algorithm.

The variance-minimization algorithm proposed by Wan, Wong, and Prusinkiewicz

[WaWP88 and WaPW90] always divides the partition with the largest variance with an

axis parallel split plane with the goal of maximizing the reduction in variance.  Instead of

considering all possible cut planes perpendicular to the R, G, and B axes, they used the

projected distributions to calculate the “optimal” 1-dimensional cutpoints in each of the

R, G, and B directions.  Using Equations (3.4) and (3.7) the optimal (t) cutpoint for a 1-

dimensional distribution with range [l..u] is defined as:
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As with Liu and Chang, Wan et al. split in the direction that maximizes the reduction in

variance, resulting in the σ22E↓t divisive algorithm.

Several researchers have studied divisive algorithms which calculate the optimal

cutpoints as defined by Heckbert; that is, for a family of parallel split planes, the one that

maximizes TSE↓ is chosen.  This strategy for selecting a partition plane position is

denoted as ⊥.  Wu [Wu91b] proposed the σ22E↓⊥ algorithm. Later Braquelaire and Brun

[BrB97] studied a small variation on Wu’s algorithm, σ22σ2⊥.

For example, the light R, G, and B curves in Figure 3.7 show E↓ for each of the R, G,

and B projected distributions of Windsails (left y-axis).  The heavy R, G, B curves show

TSE↓ induced by sweeping an orthogonal cut plane along each of the R, G, and B

directions (right y-axis).  The median, center, mean, RWM and optimal cut point of the

R, G, and B distributions are indicated on the E↓ curves.  The optimal 1-dimensional

cutpoints defined by Wan et al. are the levels at which the E↓ curves obtain maximal

value (X).  The optimal cutpoints defined by Heckbert are the levels at which the TSE↓

curves obtain maximal value (ÏÏ).  Note that the projected distributions indicate that red is

the best axis to split and that blue is a distant second choice, but actually both red and

green are good choices.
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B distributions of Windsails.  The heavy R, G, B curves show TSE↓ induced by sweeping an orthogonal cut plane along each of
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Recently Kim et al. [KiLLH96a and KiLLH96b] proposed selecting the partition

plane position using the “optimal” grayscale threshold method developed by Otsu

[Ots79].  This author has verified that the optimal greyscale threshold defined by Otsu

and the optimal cutpoint defined by Wan et al. [WaWP88] are equivalent; they are simply

defined using different definitions and notations.

3.2.3 Oct-cut

All of the algorithms discussed so far have split the “worst” partition into two pieces.

The oct-cut divisive algorithms split the “worst” partition into eight pieces, whereby

constructing an octree vice a k-d tree.  The oct-cut method, σ28t,  was first introduced in

connection with pixel-based activity weighted techniques [ChTM94, KiLLH96a, and

KiLLH96b] where higher quality images were sought by incorporating spatial

information.  A very simple oct-cut method, P8CD, was proposed by Roytman and

Gotsman [RoG95] to dynamically quantize video sequences.  In this case, speed was the

primary consideration.

In previous work, when the number of remaining colors to be chosen was less than

seven, the subdivision process terminated.  Hence, up to six representative colors may be

unused.  This dissertation proposes a small variation on the oct-cut method to prevent

under-utilizing representative colors:  when the number of colors to be selected is less

than seven, subdivide the partition into two pieces instead of eight.  Thus, the data

structure built is a heterogeneous tree consisting of octree and k-d tree nodes.

3.2.4 Oblique-Cut

All of the algorithms discussed so far have restricted the partition planes to axis parallel

cuts.  This section looks at two methods that use partition planes that are oblique to the R,

G, or B axis. The first method uses principal component analysis [OrB91, Wu91a,

WuZ91, BaBA92 and Wu92], and the second method uses the 3D radius weighted mean

[YaL95 and YaL96].
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 Principal Component Analysis

Principal component analysis is used to split the partition orthogonal to the direction of

greatest variance, which may not coincide with one of the R, G, or B axis.  Principal

component analysis requires the covariance matrix of each subpartition be maintained.

Let S be a subset of a (possibly activity weighted) histogram, H, for a truecolor image I.

Let wc=H(c) be the weight of c.  The covariance matrix CoVar of S is defined as
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The covariance matrix is a symmetric 3x3 positive semidefinite matrix.  For example, the

covariance matrix for Windsails is
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+++
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=
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085.386E 089.6923E 091.826E

)( WindsailsHCoVar .

The diagonal entries of the covariance matrix are the variances in the R, G, and B

directions.  The diagonal entries for Windsails covariance matrix are equivalent to the

TSEs reported in Figure 3.7.

The trace of the covariance matrix is the total variance of S.  Therefore, the total

variance for Windsails is 4.32908e+09.  The off diagonal entries are the covariances of

two unique (R, G, and B) directions.  For instance, the covariance of red and green for

Windsails is 969236586.392.  If the covariance of two unique directions is zero, then the

two directions are uncorrelated.

The eigenvector transform of the covariance matrix is an orthogonal matrix with the

property that the transformed data is uncorrelated.  The unit eigenvectors of the

covariance matrix are called the principal components of S.  The eigenvalues are ordered

such that λ1 ≥ λ2 ≥ λ3.  The first principal component, e1, is the eigenvector

corresponding to the largest eigenvalue, λ1.  Therefore, λ1 represents the amount of

variance in the direction with the greatest variance, e1.  The eigenvalues and

corresponding principal components of Windsails are
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 λ1=3.135E+09 λ2=1.035E+09 λ3=1.592E+08
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The total variance of S is λ1 + λ2 + λ3 = tr(CoVar(S)).  The quotient λi/tr(CoVar(S)) is the

fraction of variance in direction of the i th principal component.  In the case of Windsails,

the percentages of variance in the directions of the principal components are

e1 e2 e3
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Color Plate 3.2 illustrates the principal components of Windsails. Orchard and Bouman

[OrB91] split partition with the largest eigenvalue with a partition plane orthogonal to its

first principal component and intersecting the mean, resulting in the λ12e1µ divisive

algorithm.  Yang and Lin [YaL94] proposed intersecting at the 3D RWM instead of the

mean, resulting in the σ22e1µ3R.  The 3D RWM is defined in the following section.  Wu

proposed [Wu91a] sweeping a cut plane perpendicular to the principal axis and selecting

the position that maximizes the reduction in variance, resulting in the σ22e1⊥e divisive

algorithm.  By sorting the colors by their projections onto the principal axis, Theorem 3.2

may be used to calculate the reduction of variance induced by a split orthogonal to the

principal axis.  Wu also proposed [Wu92] using dynamic programming to find the

globally optimal κ-partition (κ>2) of the color space in the principal direction of the

histogram.  Typically, 4 ≤ κ ≤ 8.  Thus, if κ is less than K, the remaining K-κ are chosen

using the σ22e1⊥e divisive algorithm.
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(a) Principal Axis (b)  Split Planes

Color Plate 3.2:  Principal Components for Windsails. (a) The first, second and third
principal components are drawn in red, green and blue respectively.  (b) The red, green,
and blue split planes are orthogonal to the first, second and third principal components.
The principal axis in (a) and split planes in (b) intersect at the mean (91,85,83).

 3D RWM

Yang and Lin proposed a novel divisive method that uses the 3D radius-weighted mean

(RWM) [YaL95 and YaL96].  The 3D RWM of a set S (see previous section) is defined

as
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Thus, the 3D RWM biases the mean value toward distant colors.  Yang and Lin split the

partition with the largest variance with a partition plane intersecting µ3R and orthogonal

to the line R3µµ , resulting in the σ22µ3Rµ3R divisive algorithm.  Color Plate 3.3

illustrates using the 3D RWM to obtain an oblique cut for Windsails.  Notice how
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remarkably close R3µµ  is to the first principal axis of Windsails drawn in Color Plate

3.2(a).

(a) R3µµ (b)  Split Plane

Color Plate 3.3:  3D RWM for Windsails.  (a) The line passing through the µ (red) and
µ3R (blue) is drawn.  (b) The split plane passes through the µ3R (104,96,90) and is

orthogonal to the line R3µµ .

3.3 Empirical Analysis

This section provides an empirical analysis of the algorithms discussed in this chapter.

The purpose of including the agglomerative algorithms in the study is to determine the

relative quality merits between agglomerative and divisive hierarchical clustering.

Therefore, the agglomerative algorithms studied do not incorporate any fast PNN

techniques discussed in Section 3.1.1.

Table 3.2 lists the divisive algorithms studied in this section.  Note that the mean-cut

algorithm that corresponds closest to Wu and Witten’s mean-split algorithm σ22Rµ

[WuW85] was not included in the analysis.  Figure 3.8 compares the average running
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time and RMSE of all the algorithms listed in Table 3.2 for K=256 and p=(8,8,8).  This is

the most comprehensive study of divisive algorithms ever conducted.  For the first time,

one can easily compare the performance of divisive algorithms.

As expected, the oct-cut algorithms are the fastest, but produce quantized images with

relatively large RMSE.  The non variance-based median-, center-, and mean-cut

algorithms also produce quantized images with large RMSE.  The variance-based

median-, center-, and mean-cut algorithms, as well as the variance-minimization and the

principal-component oblique-cut methods all produce quantized images with relatively

low RMSE.  Interestingly, the 3D RWM oblique-cut algorithms, σ22µ3Rµ3R and σ22µ3Rµ3R,

did not fair so well.  They were faster than the principal component oblique-cut methods,

but their RMSE was not as good as the better divisive algorithms.

As previously stated in Section 3.1.1, the primary drawback of PNN is the O(N3) time

required to select the representative colors.  Table 3.3 provides the running time, RMSE,

and WRMSE for the PNN algorithm on the entire test set with K=256 and p=(8,8,8).

This table shows that the fastest running time (309s) is slow enough, but that on average,

the running time is 64,039s which is approximately 17 hours and 47 minutes.  Eye

contains the largest number of unique colors and requires the most amount time: 4 days,

10 hours, and 45 minutes!  The average RMSE for PNN is 5.43, but this is only 3.7%

better than the best divisive algorithm analyzed in this section.  This small decrease in

average RMSE requires on average 3,241 times more time.

Next the effect activity weighting has on quantization time and image quality is

examined.  Figure 3.9 compares the average running time and WRMSE of all the activity

weighted versions of the algorithms listed in Table 3.2.  Comparing Figure 3.8 to Figure

3.9 shows that activity weighting does not significantly change the average running time

of the algorithms.  Also, the relative error produced by the algorithms remains largely the

same.  That is, the WRMSE produced by activity weighting is largely determined by the

RMSE produced without activity weighting.
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Symbol Section Algorithm Number Classification

♦ 3.2.1 Median-Cut 50 R2RM
51 P2σ2M
52 N2σ2M
53 σx

22σ2M
54 σ22σ2M

♦ 3.2.1 Center-Cut 60 R2RC
61 P2σ2C
62 N2σ2C
63 σx

 22σ2C
64 σ22σ2C

♦ 3.2.1 Mean-Cut 70 R2Rµ
71 P2σ2µ
72 N2σ2µ
73 σx

 22σ2µ
74 σ22σ2µ

♦ 3.2.1 RWM-Cut 80 σ22σ2µR

♦ 3.2.2 Variance-based 81 σ22σ2t
+ 3.2.2 Variance- 90 σ22E↓µ

Minimization 91 σ22E↓t
92 σ22E↓µR

94 E↓2E↓µ
95 E↓2E↓t
96 E↓2E↓µR

97 σ22σ2⊥
98 σ22E↓⊥
99 E↓2E↓⊥

− 3.2.3 Oct-Cut 100 P8CD
103 σ28µ
104 σ28t
106 σ28µR

107 σ28⊥
• 3.2.3 3D RWM 120 σ22µ3Rµ3R

121 σ22µ3Rµ
• 3.2.3 PCA 130 σ22e1µ

131 λ12e1µ
132 σ22e1µ3R

133 σ22e1t
135 σ22e1⊥e

Table 3.2:  List of Divisive Algorithms Analyzed.  The algorithms with red numbers are
studied in greater detail than the other algorithms.  The algorithms with pink
classifications are being studied for the first time by this dissertation.
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# Name N Time (s) RMSE WRMSE

1 Shufelt 20,302 1,783 4.37 2.74
2 RGBCube 34,111 5,078 8.10 8.87
3 Shapes 9,554 309 4.24 3.80
4 Crambin 19,073 1,634 5.30 4.78
5 Solids 31,429 4,677 3.53 2.88
6 Marble 21,532 2,332 4.14 3.76
7 Cathedral 28,662 4,239 5.08 4.19
8 Sunset 19,306 1,791 3.64 3.57
9 Empire 57,388 16,746 4.39 3.09

10 Jhonni 67,085 23,603 5.59 5.08
11 Parrot 40,565 8,455 4.17 3.46
12 Matches 64,112 21,301 4.86 4.70
13 Mom 96,486 46,185 7.55 6.30
14 Tiger 73,939 27,816 5.78 4.70
15 Flowers 71,687 27,254 6.20 5.77
16 Peppers 111,344 60,401 7.57 6.93
17 Boys 23,676 3,391 2.20 2.10
18 Windsails 86,008 38,277 6.93 5.70
19 Cat 95,916 50,034 3.93 3.47
20 Woman 94,279 45,568 7.22 6.11
21 Lena 148,279 119,934 5.90 5.51
22 Boy 180,274 181,874 5.11 4.64
23 Eye 267,246 384,340 6.52 6.23
24 Chapel 266,764 348,918 8.97 7.32
25 Sailing 177,844 175,022 4.56 4.02

          Max 267,246 384,340 8.97 8.87
          Min 9,554 309 2.20 2.10
          Avg 84,274 64,039 5.43 4.79

Table 3.3:  Running Time, RMSE, and WRMSE for PNN.  K=256, p=(8,8,8).
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# Name N Time (s) RMSE WRMSE

1 Shufelt 20,302 1,671 4.54 2.32
2 RGBCube 34,111 5,570 8.12 8.87
3 Shapes 9,554 408 4.50 3.71
4 Crambin 19,073 1,770 5.69 4.50
5 Solids 31,429 5,260 3.66 2.72
6 Marble 21,532 2,502 4.20 3.65
7 Cathedral 28,662 4,590 5.21 3.96
8 Sunset 19,306 2,282 3.64 3.46
9 Empire 57,388 18,632 4.63 2.75

10 Jhonni 67,085 25,905 5.61 4.94
11 Parrot 40,565 9,085 4.34 3.28
12 Matches 64,112 23,087 4.85 4.52
13 Mom 96,486 52,888 7.68 5.97
14 Tiger 73,939 29,497 5.77 4.35
15 Flowers 71,687 30,284 6.26 5.61
16 Peppers 111,344 72,244 7.67 6.57
17 Boys 23,676 4,161 2.19 1.99
18 Windsails 86,008 41,089 7.20 5.25
19 Cat 95,916 55,485 3.95 3.38
20 Woman 94,279 50,166 7.50 5.81
21 Lena 148,279 132,201 5.96 5.26
22 Boy 180,274 211,870 5.27 4.47
23 Eye 267,246 461,443 6.56 6.05
24 Chapel 266,764 369,642 9.02 7.15
25 Sailing 177,844 209,299 4.69 3.97

          Max 267,246 461,443 9.02 8.87
          Min 9,554 408 2.19 1.99
          Avg 84,274 72,841 5.55 4.58

Table 3.4:  Running Time, RMSE, and WRMSE for Activity Weighted PNN.  K=256,
p=(8,8,8).

3.4 Subjective Observations

As previously stated in Section 2.5, WRMSE and RMSE are not the definitive measures

of subjective image quality.  Therefore, in this section the author discusses her subjective

evaluation of a small subset of the quantized images analyzed in the previous section.  In
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addition, a small subset of the quantized images produced by the empirical analysis will

be presented so that the readers may observe the image quality for themselves.

The author visually examined all images, K=256, p=(8,8,8), and Select  ∈ {P8CD,

R2RM} and found that the oct-cut and non-variance-based median-cut algorithm

produced quantized images with generally poor image quality (see Color Plate 3.4 and

Color Plate 3.5).  This subjective finding validates the empirical data presented in Figure

3.8.

The author visually examined all images, K=256, p=(8,8,8), and Select  ∈

{ σ22σx
2µ, σ22σx

2t, σ22E↓t , σ22σx
2⊥, E↓2E↓⊥, σ22µRµ, σ22e1⊥} and generally found

them to be quite good.  For some of the “easy” images in the test set (Shufelt, Marble,

Cathedral, Empire, Tiger, Boys, Cat, Chapel and Sailing), all of these algorithms

produced quantized images with outstanding quality.  On the rest of the images, which

algorithm produced the highest quality image was image dependent, but the differences

in quality were generally small.  However, the author tends to favor the quantized images

produced by E↓2E↓⊥ and σ22e1⊥, (99 and 135) which, of course, happen to be the

slowest divisive algorithms studied.

The author visually examined all images, K=256, p=(8,8,8), and Select  ∈

{ E↓2E↓⊥, σ22µRµ, PNN} and generally found them to be of comparable excellent image

quality.  However, in a few cases, the author felt PNN did a noticeably better job.

However, in no way did the author feel that the increase in image quality justified the

enormous amount of time required by the PNN algorithm.

Color Plate 3.4 and Color Plate 3.5 illustrate the types of image quality differences

produced by PNN and the algorithms circled in Figure 3.8.  Of the images in the test set,

Solids is one of the hardest to quantize.  Solids is hard to quantize because it contains

large smoothly shaded regions that are susceptible to contouring.  Notice that even

E↓2E↓⊥ and σ22e1⊥ had a difficult time quantizing Solids.  While Lena also contains

large smoothly varying regions, many of the colors in these regions occur a fairly

compact region of RGB color space.  On the other hand, Solids has smoothly varying

regions from several diverse regions of the RGB color space (see Color Plate 2.2).



63

Next the effect activity weighting has on quantization time and image quality is

examined.  The author visually examined each activity weighted and non-activity

weighted quantized image for I ∈ {Shufelt, RGBCube, Shapes, Crambin, Solids, Sunset,

Jhonni, Parrot, Matches, Flowers, Windsails, Woman, Lena}, K=256, p=(8,8,8), and

Select  ∈  {σ22σx
2µ, σ22σx

2t, σ22E↓t , σ22σx
2⊥, E↓2E↓⊥, σ22µRµ, σ22e1⊥, PNN} and

nearly always found that the image quality was unchanged or slightly improved by

activity weighting.  Comparing the corresponding images in Color Plate 3.4, Color Plate

3.5, Color Plate 3.6 and Color Plate 3.7 illustrates this point.  The arrows next to the

RMSE and WRMSE in Color Plate 3.6 and Color Plate 3.7 indicate whether the measure

increased or decreased with activity weighting.  Notice that the RMSE always increased

while WRMSE always decreased.  Thus, WRMSE seems to be a better measure of visual

image quality than RMSE.

3.5 Summary

This chapter conducted a comprehensive survey and comparative analysis of PNN and

hierarchically divisive color quantization techniques.  PNN was shown to achieve

quantized images with lower RMSE than the divisive algorithms; however, PNN requires

an impractical amount of time to do so.  Several of the divisive methods had not been

previously studied.  The divisive algorithms were discussed within the framework of a

general taxonomy for classifying divisive algorithms proposed by this dissertation.

Section 5.1 proposes the heterogeneous-cut algorithm that combines with the speed

advantages of oct-cut methods and the accuracy of variance-minimization and principal

component oblique-cut techniques.  The heterogeneous-cut algorithm obtains a position

on Figure 3.8 and Figure 3.9 that is the closest to origin.  That is, it obtains the low error

very quickly.
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(a) Original (b)  50 – R2RM, RMSE=9.24, WRMSE=8.61

(c)  74 - σ22σx
2µ, RMSE=4.02, WRMSE=3.24 (d)  81 - σ22σ2t, RMSE=3.88, WRMSE=3.13

(e) 91 - σ22E↓t, RMSE=3.88, WRMSE=3.14 (f)  97 - σ22σx
2⊥, RMSE=3.85, WRMSE=3.12

Color Plate 3.4:  Hierarchical Quantization of Solids. K=256, p=(8,8,8).
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(g)  99 - E↓2E↓⊥, RMSE=3.86, WRMSE=3.02 (h)  104 - σ28t, RMSE=5.53, WRMSE=4.80

(i)  121 - σ22µRµ, RMSE=4.14, WRMSE=3.13 (j)  135 - σ22e1⊥, RMSE=3.86, WRMSE=3.11

(k)  PNN, RMSE=3.53, WRMSE=2.88

Color Plate 3.4:  Continued.
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(a) Original (b)  50 – R2RM, RMSE=9.52, WRMSE=9.05

(c)  74 - σ22σx
2µ, RMSE=6.23, WRMSE=5.66 (d)  81 - σ22σ2t, RMSE=6.09, WRMSE=5.22

(e) 91 - σ22E↓t, RMSE=6.09, WRMSE=5.53 (f)  97 - σ22σx
2⊥, RMSE=6.15, WRMSE=5.61

Color Plate 3.5:  Hierarchical Quantization of Lena. K=256, p=(8,8,8).
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(g)  99 - E↓2E↓⊥, RMSE=6.12, WRMSE=5.56 (h)  104 - σ28t, RMSE=7.14, WRMSE=6.55

(i)  121 - σ22µRµ, RMSE=6.45, WRMSE=5.92 (j)  135 - σ22e1⊥, RMSE=5.96, WRMSE=5.44

(k)  PNN, RMSE=5.90, WRMSE=5.51

Color Plate 3.5:  Continued.
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(a) 104 - σ28t, RMSE=5.85↑, WRMSE=4.65↓ (b) 81 - σ22σ2t, RMSE=4.11↑, WRMSE=2.90↓

(c)  97 - σ22σx
2⊥, RMSE=4.16↑, WRMSE=2.98↓ (d)  99 - E↓2E↓⊥, RMSE=4.23↑, WRMSE=2.94↓

(e) 135 - σ22e1⊥, RMSE=4.01↑, WRMSE=2.90↓ (f)  PNN, RMSE=3.66↑, WRMSE=2.72↓

Color Plate 3.6: Activity Weighted Hierarchical Quantization of Solids.  K=256,
p=(8,8,8).
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(a) 104 - σ28t, RMSE=7.48↑, WRMSE=6.41↓ (b) 81 - σ22σ2t, RMSE=6.25↑, WRMSE=5.37↓

(c)  97 - σ22σx
2⊥, RMSE=6.38↑, WRMSE=5.47↓ (d)  99 - E↓2E↓⊥, RMSE=6.37↑, WRMSE=5.43↓

(e) 135 - σ22e1⊥, RMSE=6.07↑, WRMSE=5.25↓ (f)  PNN, RMSE=5.96↑, WRMSE=5.26↓

Color Plate 3.7: Activity Weighted Hierarchical Quantization of Lena.  K=256, p=(8,8,8).
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Chapter  4 

Non-Hierarchical Methods

This chapter describes several non-hierarchical methods for color image quantization.

The bulk of the non-hierarchical methods can be lumped into the broad category of

iterative refinement.  These algorithms begin with some initial set of representative colors

and then alter cluster memberships so as to obtain a better partition.  The improvement is

achieved by lifting the permanence of decisions made by hierarchical algorithms of

whether to merge in the case of agglomerative or to divide in the case of divisive.  In

many cases, the quality of the quantized image is largely determined by the initial set of

representative colors used by the iterative refinement method.  This chapter describes the

Linde-Buzo-Gray (LBG) algorithm as its one example of an iterative refinement method

[LiBG80].

Non-hierarchical methods that methods that will not be described by this dissertation

include:

(i) K-means [KoCL93 and VeB95],

(ii) simulated annealing [FiO89],

(iii) neural networks [Dek94, GaMC94, ReSMG97a, ReSMG97b, and PeL98], and

(iv) evolutionary  or genetic programming [Sch96a, FrS97, and TaAE98].

The main problem with these techniques is that they have several parameters to which

their performance is very sensitive.  A couple of hybrid algorithms have also been

proposed:

(i) genetic and K-means [Sch97],

(ii) genetic and LBG [Sch96b]
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In the future it would be interesting to compare the methods proposed in Chapter  5 to

some of these non-hierarchical methods.

4.1 The Popularity Algorithm

This section takes a quick look at the popularity algorithm [Bra86, Hec80 and Cla95].

The popularity algorithm is of interest primarily because it was the first color image

quantization algorithm proposed.  This algorithm simply selects the K most popular

colors in the truecolor image; that is, the K colors with the highest frequency are chosen.

The popularity algorithm works best if the histogram has been prequantized using bit-

cutting, thus clustering neighboring colors in the histogram.

Color Plate 4.1 illustrates typical image quality produced by the popularity algorithm.

Notice that images quantized R5G6B4 look significantly better than those quantized in

R8G8B8. The popularity algorithm can also be modified to incorporate activity weighting;

that is, the K colors with the highest activity weighting are chosen.  Color Plate 4.1(c) and

(d) show how activity weighting can effect the quality of quantized images produced by

the popularity algorithm.  In Solids, the yellow ball has become nearly flawless, but

contouring in the white wall and purple cube has become much more severe.  Activity

weighting has clearly improved the image quality in Lena, despite the fact that the

WRMSE for the activity weighted image is higher than the non-activity weighted image.

The primary drawback of the popularity algorithm is that sparse, but potentially

important areas of the histogram are often under-represented.  In order to ensure a better

distribution among the selected representatives, several modifications to the basic

popularity algorithm have been proposed.  For example, after a color is selected,

Braudaway [Bra86] reduces the counts of neighboring colors in the histogram using a

spherically symmetric exponential function2. Clark [Cla95] divides the histogram into

four regions (red-dominant, green-dominant, blue-dominant, and gray-dominant) and

then selects one-fourth of representative colors from each of the four regions.  These

enhancements are not further explored by this dissertation.

                                               
2 Braudaway’s technique is patented, United States Patent No. 4,907,075.
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(a) R8G8B8, RMSE=42.36, WRMSE=41.15 (b) R5G6B4,  RMSE=12.04, WRMSE=11.22

(c) Activity Weighted, R5G6B4, RMSE=15.41,
WRMSE=14.98

(d) Activity Weighted, R5G6B4, RMSE=16.46,
WRMSE=15.22

(e) R8G8B8, RMSE=29.23, WRMSE=29.52 (f) R5G6B4, RMSE=16.62, WRMSE=13.45

Color Plate 4.1:  Popularity Quantization of Solids and Lena.  K=256.
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4.2 The MinMax Algorithm

In 1985, Gonzalez [Gon85] proposed an approximation algorithm that seeks to minimize

the maxDiam metric defined in Section 2.4.4.  In 1986, Houle and Dubois [HoD86]

proposed the MinMax algorithm for color image quantization which turns out to be

Gonzalez’s general purpose clustering algorithm applied to color image quantization. The

goal of the MinMax algorithm is to obtain a K-split S* = { }*
1

*
1

*
0 ,,, −Ksss �  for C such that

maxDiam(S*) = min{maxDiam(S) | S is a K-split for C}. (4.1)

Pseudocode for the MinMax algorithm is provided in Figure 4.1.

Algorithm: MinMax algorithm to select representatives
Input:       C The set of N unique colors in I

K The numbers of colors to be selected.
Assumption:  N > K.

Output:    RK Selected representatives for I
SK K-split for C

     // Step 1:   Initialization
1 s0  ← C  = { c1, c2, …, cN } ⊆ RGB
2 r0  ← c1

      // Step 2:   Iterative Creation of New Clusters
3 for  k ← 1 upto  K - 1
4    δ  ← max {d2(ci, rj) | ci ∈ sj and 0 ≤ j ≤ k-1 }
5    c  ← one of the colors whose distance to its representative is δ
6    move c  to sk

7    rk  ← c
       // Step 3:   Reassignment of Colors to New Cluster

8    for each j ← 0 upto  k-1
9    for each c ∈ sj

10            if  d2(c, rk) ≤ d2(c, rj)
11        move c  to sk

12 return  RK and SK

Figure 4.1:   Pseudocode for the MinMax Algorithm.
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4.2.1 Theoretical Interest

One of the interesting aspects of the MinMax algorithm is that Gonzalez [Gon85] proved

it constructs a K-split whose maxDiam is less than or equal to two times the maxDiam of

the optimal K-split.  His proof is formalized in Lemma 4.1 and Theorem 4.1.

Lemma 4.1: MinMax ⇒ ),(max 2 ij

Ss
sc

rcd

Ki

ij
∈
∈

 ≤ ),(min 2

,

ml

Rrr
ml

rrd
Kml ∈

≠
.

Let C be the set of N unique colors in truecolor image I. Let K < N. Let

{ }110 ,,, −= KK sssS �  be the K-split for C obtained by the MinMax algorithm.  Likewise,

let { }110 ,,, −= KK rrrR �  be the representative colors obtained by the MinMax algorithm.

Then ),(max 2 ij

Ss
sc

rcd

Ki

ij
∈
∈

 ≤ ),(min 2

,

ml

Rrr
ml

rrd
Kml ∈

≠
.

Proof:  By loop induction on k.

Basis.  Let k=1, then S2 ={s0, s1} and R2={ r0, r1}.  By lines 4-7 of Figure 4.1, δ =

d2(r0, r1).   By line 4, ∀c ∈ C, d2(c, r0) ≤ δ.  If c ∈ s1 then by lines 8-11 of

Figure 4.1, d2(c, r1) ≤ δ.  Thus ),(max 2

2

ij

Ss
sc

rcd

i

ij
∈
∈

 ≤ ),(min 2

, 2

ml

Rrr
ml

rrd
ml ∈

≠
. �

Induction. Let k = K-1, then { }110 ,,, −= KK sssS �  and { }110 ,,, −= KK rrrR � .  Observe

that a color does not change cluster membership unless its distance to the new

cluster representative is less than the current distance to its representative and that

cluster representatives never change.  Thus, ),(max 2 ij

Ss
sc

rcd

Ki

ij
∈
∈

 ≤  ),(max 2

1

ij

Ss
sc

rcd

Ki

ij

−∈
∈

.

However, by the induction hypothesis and lines 4-7 of Figure 4.1,

),(max 2

1

ij

Ss
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Ki
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Rrr
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rrd
Kml ∈

≠
. �
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Theorem 4.1:   MinMax ⇒ maxDiam (SK) ≤ 2⋅maxDiam ( *
KS ).

Let C be the set of N unique colors in truecolor image I. Let K < N. Let

{ }110 ,,, −= KK sssS �  be the K-split for C obtained by the MinMax algorithm.  Likewise,

let { }110 ,,, −= KK rrrR �  be the representative colors obtained by the MinMax algorithm.

Let { }*
1

*
1

*
0

* ,,, −= KK sssS �  be an optimal K-split for C.  That is, maxDiam( *
KS ) =

min{maxDiam(S) | S is a K-split for C}. Then maxDiam (SK) ≤ 2⋅maxDiam( *
KS ).

Proof:  By construction.

Suppose the algorithm in Figure 4.1 picks one more representative rK.  Let δ

= ),(max 2 ij

Ss
sc

rcd

Ki

ij
∈
∈

.  Then by Lemma 4.1, ),(min 2

,

ml

rRrr
ml

rrd
kKml ∪∈

≠
 ≥ δ.  That is, the

minimum pairwise distance between representatives is at least δ.  In any K-

split of C at least two of the representatives in RK ∪ rk must be in the same

cluster.  Hence, δ is a lower bound on the maximum diameter of *
KS .  That

is, maxDiam ( *
KS ) ≥ δ.  However, it has already been established that δ =

),(max 2 ij

Ss
sc

rcd

Ki

ij
∈
∈

.  Thus by the triangle inequality, the maxDiam(SK) = 2⋅δ.

Hence, maxDiam (SK) ≤ 2⋅maxDiam( *
KS ). �

The application of the MinMax algorithm to color image quantization has been studied

and enhanced by several researchers [HoD86, Gol91, Xia97 and TrCC97].  For example,

to speed up the MinMax algorithm given in Figure 4.1, both Houle and Dubois [HoD86]

and Goldberg [Gol91] proposed using a subset C′ of the entire set C of N unique colors in

I:

C′ = { c′ | H(c′) ≥ vc }, (4.2)

where vc is a predetermined threshold [HoD86 and Gol91].  Clearly when vc = 0, C′ = C.

In Gonzalez’s algorithm [Gon85], the selection of r0 is arbitrary.  Houle and Dubois

[HoD86] suggest using either the most popular color, or black as the initial
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representative.  The rationale for using black is based on their claim that black is one of

the most probable colors found in natural images.

In 1997, without any reference to Houle and Dubois [HoD86] or Goldberg [Gol91],

Xiang [Xia97] proposed the use of Gonzalez’s algorithm [Gon85] for color image

quantization.  Xiang suggested two modifications to the MinMax algorithm:

(i) the centroid of each of the K clusters produced in the for loop in lines 3-11 of

Figure 4.1 become the representative colors for each of the K clusters , and

(ii) the distance function is scaled to account for the relative importance of each of the

R, G, and B channels:

( ) ( ) ( )222 ..25.0....5.0),( BBGGRRds yxyxyxyx −⋅+−+−⋅= . (4.3)

These two changes do not invalidate Theorem 4.1 because the diameters of the final

clusters remain unchanged, and because the scaled distance function is metric.  The next

two sections show that these two changes help to improve the quality of the quantized

images; however, the quality is far inferior to some of the better hierarchical methods

discussed in the previous chapter.

4.2.2 Empirical Analysis

To determine the merits of the maxDiam metric, this dissertation examines three versions

of the MinMax algorithm.  The purpose of examining the MinMax algorithm is to

determine the potential accuracy to achievable by the MinMax algorithm.  Therefore, all

versions let vc=0, and all experimental results are for K=256 and p=(8,8,8).  Since black

is not necessarily a color found in all images, nor is it necessarily one of the most

probable colors, all versions choose the most popular color as the initial representative.

The first version of MinMax implements the original algorithm.  Version two is

identical to the first version except the first modification suggested by Xiang [Xia97] has

been implemented.  That is, the centroids of the resulting clusters are used as the K

representative colors. The third version of MinMax is identical to the second version

except the scaled distance function (ds) given by Equation 4.3 is used.
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Version Time (s) maxDiam RMSE

1 57.62 33.69 9.32

2 56.81 33.69 7.03

3 57.48 63.65 7.17

Table 4.1:  Average Running Time, maxDiam, RMSE, and WRMSE for MinMax.
K=256, p=(8,8,8).

Table 4.1 gives the average running time, maxDiam, RMSE, and WRMSE for each of

the three versions of MinMax for K=256 and p=(8,8,8).  The average running time of

MinMax is about three times greater than the slowest hierarchically divisive algorithm

analyzed in Section 3.3.  One would hope that this increase in running time would lead to

quantized images with lower RMSE.  Unfortunately, MinMax doesn’t deliver.  Instead,

the average RMSE for MinMax is comparable to the oct-cut and non variance-based

median-, center-, and mean-cut algorithms analyzed in Section 3.3.  Thus, MinMax

spends about ten times longer than the oct-cut and non variance-based median-, center-,

and mean-cut algorithms, while producing quantized images with comparable quality in

terms of RMSE.  Note that the maxDiam for the third version is about twice that of the

other two versions.  This is because the third version uses the scaled distance function (ds,

Equation 4.3) while maxDiam uses the Euclidean distance function (d2, Equation 2.11).

4.2.3 Subjective Observations

Color Plate 4.2(a) and (d) show the results of quantizing Lena and Solids using version

one of the MinMax algorithm.  As you can see, the results are very disappointing due to

the considerable contouring in the numerous smooth regions of the images.  In addition to

contouring, there is considerable color shifting in Solids.  Color Plate 4.2 (b) and (e) show

that using the centroids of the resulting clusters for the K representative colors yields

some improvement; however, the contouring remains quite unsatisfactory. Color Plate

4.2 (c) and (f) show that the scaled distance function helps to improve the image quality

of Lena, but that in the case of Solids, the image quality remains quite poor.
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(a) Version 1, maxDiam=32.12, RMSE=9.04 (b) Version 2, maxDiam=32.12, RMSE=6.35

(c) Version 3, maxDiam=58.26, RMSE=7.59 (d) Version 1, maxDiam=30.68, RMSE=9.48

(e) Version 2, maxDiam=30.68, RMSE=6.96 (f) Version 3, maxDiam=55.18, RMSE=6.82

Color Plate 4.2:  MinMax Quantization of Solids and Lena.  K=256, p=(8,8,8).



79

As previously noted, the maxDiam for the third version is about two times greater

than the maxDiam for the first two versions.  However, the quantized images produced by

the third version do not look significantly worse than the images produced by the first

two versions.  Thus, for the purposes of color image quantization, maxDiam (using the

Euclidean distance function) is not a reasonable metric.  For Color Plate 4.2, RMSE

reasonably measures the subjective image quality.

4.3 Linde-Buzo-Gray (LBG)

Algorithm: LBG algorithm to select representatives
Input:                  C The set of N unique colors in I

K The numbers of colors to be selected.
Assumption:  N > K.

H Histogram of I
RK Initial representatives for I
threshold Minimum number of pixels that can change clusters

Output:    RK Selected representatives for I
SK K-split for C

 // Step 1:   Initialization
1 for  j ← 1 upto  N
2     add cj ∈ C to cluster sk s.t. d2(c, rk) ≤ d2(c, r l), 0 ≤ l < K
3 for  j ← 0 upto  K–1
4     r j ← centroid of sj

 // Step 2:   Iterative Reassignment of Colors to Clusters
5 do
6   for  j ← 0 upto  K–1
7      for each c ∈ sj

8          move c to cluster sk s.t. d2(c, rk) ≤ d2(c, r l), 0 ≤ l < K
9   for  j ← 0 upto  K–1

10      r j ← centroid of sj

11 until  the percentage of pixels that changed

      clusters ≤ threshold
12 return  RK and SK

Figure 4.2:   Pseudocode for the LBG Algorithm.

The Linde-Buzo-Gray (LBG) algorithm is a fixed-point iterative refinement algorithm

developed by [LiBG80] for vector quantization codebook design.  Pseudocode for the



80

LBG algorithm is provided in Figure 4.2.  When the threshold parameter used in line 12

of Figure 4.2 is zero, the LBG algorithm is guaranteed to converge to a local minimum;

however, there is no guarantee that it will converge to an optimal solution.  Not

surprisingly, the fidelity the LBG algorithm depends heavily upon the initial K

representatives.  As such, the LBG algorithm is often used as a post-process to refine the

K representatives selected by some other method.  The LBG algorithm studied in the

following two sections begins with initial representatives that were chosen by the σ22e1⊥e

hierarchically divisive algorithm.  The threshold used was zero.  That is, LBG was run

until it converged at a local minimum.

4.3.1 Empirical Analysis

# Time (s) TimeLBG (s) Iterations RMSE WRMSE

Max 709.18 654.20 41 8.61 8.57
Min 17.69 11.26 8 1.65 1.51
Avg 166.29 147.40 19.0 5.10 4.41

Max 618.02 564.36 38 8.69 8.58
Min 22.44 14.93 9 1.81 1.49
Avg 179.00 159.39 19.4 5.27 4.25

Table 4.2:  Empirical Data for LBG.  K=256, p=(8,8,8), threshold=0.  The initial
representatives were chosen using the σ22e1⊥e hierarchically divisive algorithm.  The
shaded data indicates activity weighting was used.

Table 4.2 provides empirical data for the LBG algorithm where the initial representatives

were selected using the σ22e1⊥e hierarchically divisive algorithm.  The time listed in the

first column represents the total running time including selecting the initial

representatives.  The time listed in the second column represents time to improve the

initial representatives using LBG.  The fourth column gives the total number of iterations

required by LBG to reach a local minimum (threshold = 0).  Notice that the average

RMSE and WRMSE for LBG is slightly lower than for PNN (Table 3.3 and Table 3.4),

but that LBG requires less than 0.3% of the time on average.
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4.3.2 Subjective Observations

Color Plate 3.5 illustrate the types of image quality differences produced by LBG when

initialized with representatives chosen by an excellent algorithm (σ22e1⊥e).  As with the

hierarchical algorithms observed in Section 3.4, activity weighting slightly enhances

image quality.  Notice that in Color Plate 3.5 activity weighting increases RMSE but

decreases WRMSE.  Thus, WRMSE seems to be a better measure of visual image quality

than RMSE.  The author visually examined all images, activity weighted, K=256,

p=(8,8,8), and Select  ∈ {σ22e1⊥e, PNN, LBG } and generally found them to be of

comparable excellent image quality.  LBG enhanced the image quality of σ22e1⊥e

quantized images in a manner similar to the improvements added by activity weighting,

small and subtle.  In a few cases the PNN algorithm did a noticeably better job than

σ22e1⊥e, but LBG helped to close the gap.

4.4 Summary

This chapter described and analyzed three non-hierarchical algorithms.  The analysis of

the MinMax algorithm showed that the maxDiam metric is inappropriate for color image

quantization.  The LBG iterative refinement algorithm was shown to be a much more

cost-effective way to achieve image quality close to PNN.  Section 5.1.1 proposes an

algorithm that is a hybrid between the MinMax algorithm and LBG.  The new algorithm

incorporates frequency (or activity weighting) information in order to obtain quantized

images with significantly less visual distortion than the MinMax algorithm.  The running

time of the new method is in between MinMax and LBG, but closer to MinMax.
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(a) RMSE=3.38, WRMSE=2.80 (b) RMSE=5.58, WRMSE=5.06

(c) Activity Weighted, RMSE=3.43,
WRMSE=2.59

(d) Activity Weighted, RMSE=5.70,
WRMSE=4.91

Color Plate 4.3:  LBG Quantized Images.  Truecolor images Lena and Solids quantized
to 256 colors using LBG iterative refinement, p=(8,8,8).  The initial representatives were
chosen using the σ22e1⊥e hierarchically divisive algorithm.
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Chapter  5 

Proposed Methods

This chapter describes and analyzes two new color quantization techniques.  Section 5.1

proposes the heterogeneous-cut algorithm that combines five of hierarchically divisive

color image quantization algorithms to obtain high quality quantized images quickly.

Section 5.2 proposes a hybrid between MinMax and LBG called the weighted MinMax

method.

5.1 Heterogeneous-Cut Algorithm

The heterogeneous-cut algorithm proposed by this dissertation results from the systematic

and comprehensive study of divisive algorithms conducted in Chapter  3.  The

heterogeneous-cut algorithm combines five of these divisive algorithms in a unique way

that capitalizes on the strengths of each technique, but does not suffer from their

weaknesses.  A flow-chart for the proposed heterogeneous-cut algorithm is provided in

Figure 5.1.  The heterogeneous-cut algorithm always selects the partition with the largest

variance to further subdivide.  Let n be the number of unique colors in the partition to be

divided.  The decision as to the number of subpartitions, as well as the position and

orientation of the partition planes depends how n compares to N and the percentages of

variance in each of the three directions.  Four threshold values are used (t1, t2, t3, t4).  The

first three thresholds are selected such that t1 < t2 < t3 < 0.05.  The empirical results

reported in this dissertation use the following threshold values: t1=0.004, t2=0.010,

t3=0.026, t4=20.
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n is the number of colors in the partition to be subdivided.
N is the number of unique colors in the truecolor image.

Figure 5.1:  Flow-chart for the Proposed Heterogeneous-Cut Algorithm. The heterogeneous-cut algorithm combines five
divisive algorithms in a unique way.
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The time required to split a partition depends on n.  The oct-cut algorithms obtain their

speed by reducing the number of splits necessary because each split results in seven new

subpartitions.  The oct-cut algorithms produce low quality quantized images because

partitions are often split in three directions when the partition doesn’t have much variance

in one or two of the directions.  Therefore, the heterogeneous-cut algorithm uses the oct-

cut algorithm (σ28t, 104) only when n is large (n ≥ N⋅t3) and when the percentage of

variance in all three directions is larger than t4.  Otherwise, when n is large (n ≥ N⋅t3), but

there is not sufficient variance in one or more of the directions, the variance-based mean

split algorithm (σ22σ2µ, 74) is used.  This algorithm was selected because it is relatively

fast and produces images with relatively low RMSE.

On the other hand, the oblique-cut algorithm (σ22e1⊥e, 135) produces high quality

quantized images, but is slow.  Therefore, this oblique-cut algorithm is used only n is

small (n < N⋅t1).  The heterogeneous-cut algorithm also incorporates two other algorithms

(σ22σ2t and σ22E↓t) that produce images with relatively low RMSE.  Since σ22E↓t (91)

requires more time than σ22σ2t (81), σ22E↓t is used when n is medium small (N⋅t1 ≤ n <

N⋅t2) and σ22σ2t is used when n medium large (N⋅t2 ≤ n < N⋅t3).

5.1.1 Empirical Analysis

The success of the heterogeneous-cut algorithm is highlighted in Figure 5.2.  This figure

compares the average running time and RMSE of the proposed heterogeneous-cut

algorithm (150) to the divisive algorithms listed in Table 3.2.  The algorithms used by the

heterogeneous-cut algorithm are circled in red.  The heterogeneous-cut algorithm is

surrounded by a star.  The heterogeneous-cut algorithm is not much slower than the oct-

cut algorithm (104), but produces quantized images with significantly less RMSE.  For

the given test set, one could justifiably call a quantization technique “high quality” if the

average RMSE is less than 6.0.  Given this definition of high quality, the heterogeneous-

cut algorithm is the clear winner with respect to time.
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86



 Activity Weighted, K  = 256, p=(8,8,8), Centroid Mapping

8081 73

90

53
54

63

64

52

62

103
106

107

120

121

130

104

74

50

70
72

60
71

131

51

61

92

150

135 98

133

100

99

97

95

91

96
94

132

5

7

9

11

13

15

17

19

4.5 5.5 6.5 7.5 8.5 9.5WRMSE

T
im

e 
(s

)
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Figure 5.3 compares the average running time and WRMSE of all the activity

weighted versions of the same divisive algorithms analyzed in Figure 5.2.  Comparing

Figure 5.3 to Figure 5.2 shows that the heterogeneous-cut algorithm is also successful

when activity weighting is used.  For the given test set, one could justifiably call a

quantization technique high quality if the average WMSE is less than 5.0.  Given this

definition of high quality, the heterogeneous-cut algorithm is once again the clear

winner with respect to time.  Thus, of all the divisive algorithms studied by this

dissertation, the heterogeneous-cut algorithm has obtained the best balance between

time and quality.

Table 5.1 shows the number of splits made by the heterogeneous-cut algorithm

and the percentage of splits made in each of the five categories.  On average over

65% of the splits are in categories 2 or 3; however, Figure 5.2 and Figure 5.3 show

that the average running times are closest to category 5 and the average RMSE and

WRMSE are closest to category 4.

# Of Splits 1: σ22e1⊥e 2: σ22E↓t 3: σ22σ2t 4: σ22σ2µ 5: σ28t

Max 252 33.99% 50.29% 44.05% 22.22% 16.28%
Min 129 0.53% 13.49% 26.80% 1.55% 0.40%
Avg 174.76 8.84% 37.02% 34.78% 10.83% 8.53%

Max 253 43.38% 45.61% 43.25% 22.13% 16.28%
Min 129 0.00% 7.54% 19.12% 1.47% 0.40%
Avg 176.2 13.66% 34.38% 32.62% 10.96% 8.38%

Table 5.1:  Number of Splits Made by the Heterogeneous-Cut Algorithm.  K=256,
p=(8,8,8).  The shaded data indicates activity weighting was used.

5.1.2 Subjective Observations

Color Plate 5.1 illustrates that indeed the proposed heterogeneous-cut algorithm

produces high quality quantized images.  Comparing Color Plate 5.1 to the images in

Color Plate 3.4, Color Plate 3.5, Color Plate 3.6, and Color Plate 3.7 shows that the

heterogeneous-cut algorithm is competitive with many of the high quality
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quantization techniques.  It clearly isn’t the best performer, but nor is it the worst.

Recall, however, it is amongst the fastest!

(a) RMSE=4.24, WRMSE=3.49 (b) RMSE=6.21, WRMSE=5.68

(c) Activity Weighted, RMSE=4.66,
WRMSE=3.47

(d) Activity Weighted, RMSE=6.35,
WRMSE=5.47

Color Plate 5.1:  Proposed Heterogeneous-Cut Quantization of Solids and Lena.
K=256, p=(8,8,8).

5.2 Weighted MinMax

This dissertation conjectures that the MinMax algorithm produces quantized images

with considerable contouring because it treats all colors equally.  The RMSE (or
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WRMSE) metric gives weight to each color proportional to the color’s frequency (or

activity weighting).  Thus, this dissertation proposes modifying the MinMax

algorithm in two simple ways:

(i) the distance from the each color to its representative is weighted by the

number of times that color occurs in the image, and

(ii) the representative color of each cluster is set to its centroid at the end of each

iteration (as in the LBG algorithm).

In this way, the colors that occur more frequently are given higher precedence.

Pseudocode for the proposed weighted MinMax algorithm is provided in Figure 5.4.

Algorithm: Weighted MinMax algorithm to select representatives
Input:       C The set of N unique colors in I

K The numbers of colors to be selected.
Assumption:  N > K.

H Histogram of I
Output:    RK Selected representatives for I

SK K-split for C
      // Step 1:   Initialization

1 s0  ← C  = { c1, c2, …, cN } ⊆ RGB
2 r0  ← c1

      // Step 2:   Iterative Creation of New Clusters
3 for  k ← 1 upto  K - 1
4    δ  ← max {d2(ci, rj)⋅H(ci) | ci ∈ sj and 0 ≤ j ≤ k-1 }
5    c  ← one of the colors whose distance to its representative is δ
6    move c  to sk

7    rk  ← c
       // Step 3:   Reassignment of Colors to New Cluster

8    for each j ← 0 upto  k-1
9    for each c ∈ sj

10            if  d2(c, rk) ≤ d2(c, rj)
11        move c  to sk

12    for each j ← 0 upto  k
13     rj ← centroid of sj

14 return  RK and SK

Figure 5.4:   Pseudocode for the Weighted MinMax Algorithm.  The shaded lines
indicate changes from the original MinMax algorithm given in Figure 4.1.
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Theorem 3.2 does not apply to the weighted MinMax algorithm because the weighted

distance used in lines 4 and 10 of Figure 5.4 does not satisfy the triangle inequality

and because the cluster representatives may change at the end of each iteration of the

while loop.

5.2.1 Empirical Analysis

# Time (s) maxDiam RMSE WRMSE

Max 311.20 105.76 11.60 9.09
Min 9.83 37.20 1.84 1.58
Avg 86.43 62.36 5.77 4.73

Max 265.83 125.06 10.94 9.01
Min 9.98 37.20 2.00 1.60
Avg 91.95 76.29 6.01 4.68

Table 5.2:  Empirical Data for Proposed Weighted MinMax.  K=256, p=(8,8,8).
The shaded data indicates activity weighting was used.

Table 5.2 gives the maxDiam, RMSE, WRMSE and the maximum, minimum and

average running time for each of the three versions of the proposed weighted

MinMax algorithm.  Comparing the average running time data in Table 4.1, Table

4.2, and Table 5.2 shows that the average running time of the weighted MinMax

algorithm is about one and a half times that of MinMax and about half that of LBG.

Using the definitions of “high quality” proposed in previous section, the proposed

weighted MinMax algorithm passes muster on both accounts.  The average RMSE for

non-activity weighting is less than 6.0, and the average WRMSE is less than 5.0 for

activity weighting.   Note, however, Table 4.1 and Table 4.2 show that MinMax does

not qualify as high quality, but LBG does.  Thus, the proposed weighted MinMax

algorithm illustrates how combining a “low quality” quantization technique

(MinMax) with a high quality quantization technique (LBG) yields a high quality

technique whose running time is in between the two techniques.  However, since the

average running time of proposed weighted MinMax is about four times greater than
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the slowest hierarchically divisive algorithm analyzed in Section 3.3, it is not

competitive with these algorithms from a time perspective.

5.2.2 Subjective Observations

(a)  maxDiam=76.23, RMSE=4.14, WRMSE=3.10(b) maxDiam=39.19, RMSE=5.97, WRMSE=5.52

(c) Activity Weighted, maxDiam=87.15,
RMSE=4.56, WRMSE=3.14

(d) Activity Weighted, maxDiam=64.89,
RMSE=5.85, WRMSE=5.20

Color Plate 5.2:  Proposed Weighted MinMax Quantization of Solids and Lena.
K=256, p=(8,8,8).

Color Plate 5.2 illustrates the success of the proposed weighted MinMax algorithm in

producing high quality quantized images.  Comparing Color Plate 5.2 to the images in
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Color Plate 4.2 and Color Plate 4.3 shows that the weighted MinMax-cut algorithm

far superior to MinMax and is competitive with LBG.

5.3 Summary

This chapter proposed and analyzed two color quantization techniques that are

hybrids of quantization techniques discussed in Chapter  3 and Chapter  4.  Both of

the proposed algorithms show how combining low quality, but fast color quantization

techniques with high quality (but slower) techniques achieves new high quality

methods with running times that are in between the slow and fast methods, but closer

to the fast.
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Chapter  6 

Conclusions

This dissertation conducted a comprehensive survey and comparative analysis of PNN

and thirty-eight hierarchically divisive color quantization techniques.  The divisive

algorithms were discussed within the framework of a general taxonomy for classifying

divisive algorithms proposed by this dissertation.  The analysis used a test set consisting

of twenty-five diverse images, and is the most comprehensive comparative analysis

conducted to date.  PNN was shown to achieve quantized images with lower RMSE than

the divisive algorithms; however, PNN requires an impractical amount of time to do so.

Several of the divisive methods had not been previously studied.

This dissertation also described and analyzed three non-hierarchical algorithms.  The

analysis of the MinMax algorithm showed that the maxDiam metric is inappropriate for

color image quantization.  The LBG iterative refinement algorithm was shown to be a

much more cost-effective way to achieve image quality close to PNN.

This dissertation proposed and analyzed two color quantization techniques that are

hybrids of quantization techniques previously proposed in the literature.  The first method

adaptively combines five hierarchically divisive techniques, capitalizing on the strengths

of each technique, but not suffering from their weaknesses.  The second method

combines MinMax and LBG.  Both of the proposed algorithms show how combining low

quality, but fast color quantization techniques with high quality (but slower) techniques

achieves new high quality methods with running times that are in between the slow and

fast methods, but closer to the fast.  A generalized method for applying activity weighting

to any histogram-based color quantization algorithm was also proposed.  The generalized

activity weighting was shown to be a fast and effective way to enhance the quality of

quantized images.
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